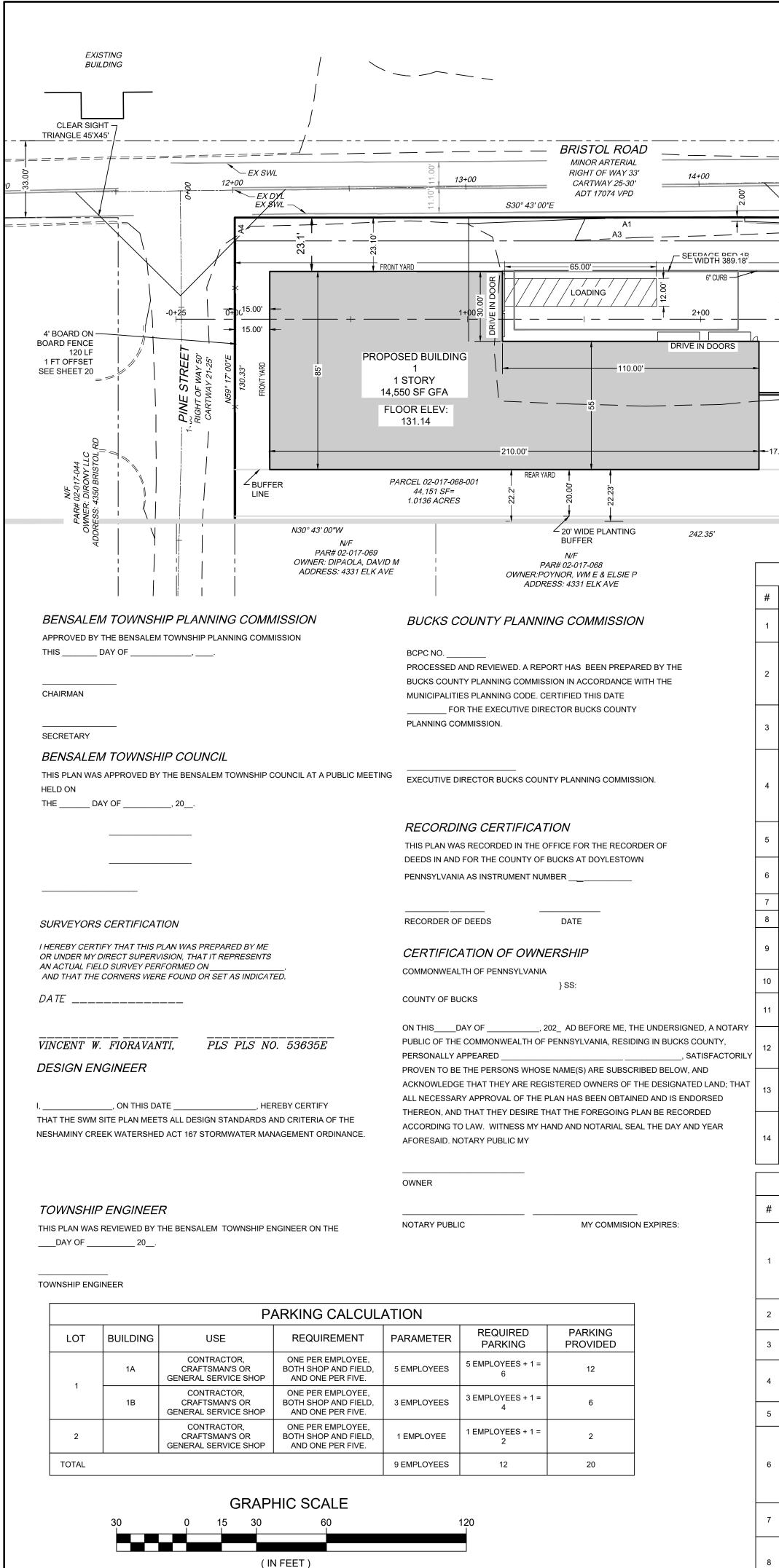
COMMENTS and RESPONSES 3/18/2024

#	Local	Line	COMMENT	RESPONSE	Reference Sheet (s)
	Prelin	ninary	Subdivision and Land Development – 1st Review		1/12/2024
			A. Zoning Ordinance Review		
1	1		 Sec. 232-380. – Use regulations. a. A variance was granted but not reflected in the Zoning Table and note 5 is incorrect. It reads: Auto Repair and Storage Garage, not what was granted. Update the note to reflect the accurate approved uses and identify that a variance was granted. i. Proposed use of a warehouse distribution (Lot 1) ii. Proposed personal storage garage (Lot 2). 	Note 5 has been replaced with revised tables.	1
2	2		Sec. 232-583. – Yard exception for private garages, accessory building and retaining walls. a. The applicant proposes a 5-foot-tall board-on-board fence along Pine Ave for screening purposes.	a Fence height reduced to 4 feet.	3, 20
				b Retaining Wall 3 has been revised.	4
			B. Subdivision and Land Development Ordinance (SALDO) Review		
3	6 1		1. Sec. 201-41. – Preliminary plan requirements. a. Please update the plans indicating that Emery Lane is a paper street.	Emery Lane label has been revised	1
			b. There is an overhead PECO utility line running along the frontage of Bristol Road. Confirm the presence of any easements on this land and provide a	PECO has been contacted.	2
			statement from the utility. c. The storm drain labels for the points of connection are incomplete. The information for these locations should be revised to provide all information.	All available storm drain information has been included on the plans.	5,14

Deference

#	Local	Line COMMENT	RESPONSE	Reference Sheet (s)
4	2	Sec. 201-104. – Street design standards. a. Bristol Road is classified as a Minor Arterial and has a right of way width of 80-feet. Bristol Road currently has a ROW of 60 feet. Therefore, the applicant should dedicate ten (10) feet of ROW to Bensalem Township for the purposes for futur roadway improvements. The applicant is offering a 10-foot strip of land along Bristol Road of access easement. If the intent of the "Access easement" is to fulfill the 10-feet of ROW that is to be dedicated to the Township for future roadway improvements, the plans should be updated as such, and all setback dimensions shall be measured from the 10-foot setback line. However, there were variances already provided for the front yard setbacks currently shown on the plans. Please clarify the intent.	The easement is an easement for future sidewalk.Added Note 9 See waiver 3 sheet 1 e	1
5	3	Sec. 201-106. – Environmental protection and open space preservation. a. The updated proposed grading divert water to Pine Street at the SW corner. Grading shall not take place within three (3) feet of a property line. Applicant is requesting a waiver.	information only	na
6	4	 Sec. 201-110. – Curbs. a. Curbs should be provided by the developer. Approximately 489 feet along E Bristol Road, 61 feet along Grove Avenue, and 130 feet along Pine Street. Applicant proposes to curb entrance to lot 1 only. The applicant requests a waiver to pay a fee in lieu of installing the curb. b. The cartway width shall be widened by an additional 10 feet to meet the requirement of the widening of East Bristol Road. The applicant requests a waiver and indicates a 10-foot access easement. The purpose of the easement shall be clarified. If it is for future needs to widen Bristol Road, the front yard setbacks shall be dimensioned from the future ROW line. 	information only The easement is an easement for future sidewalk.Added Note 9	na 1

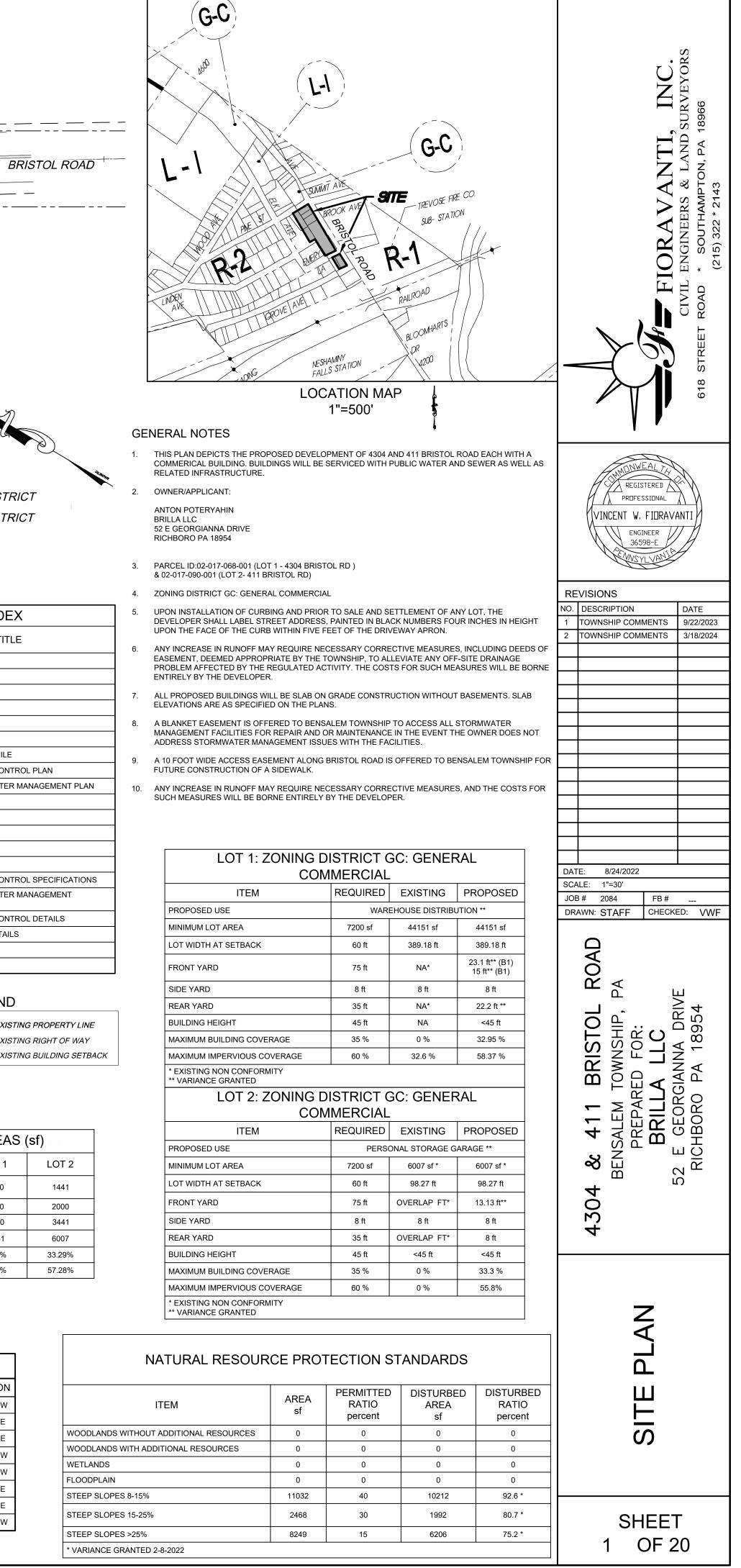
COMMENTS and RESPONSES 3/18/2024

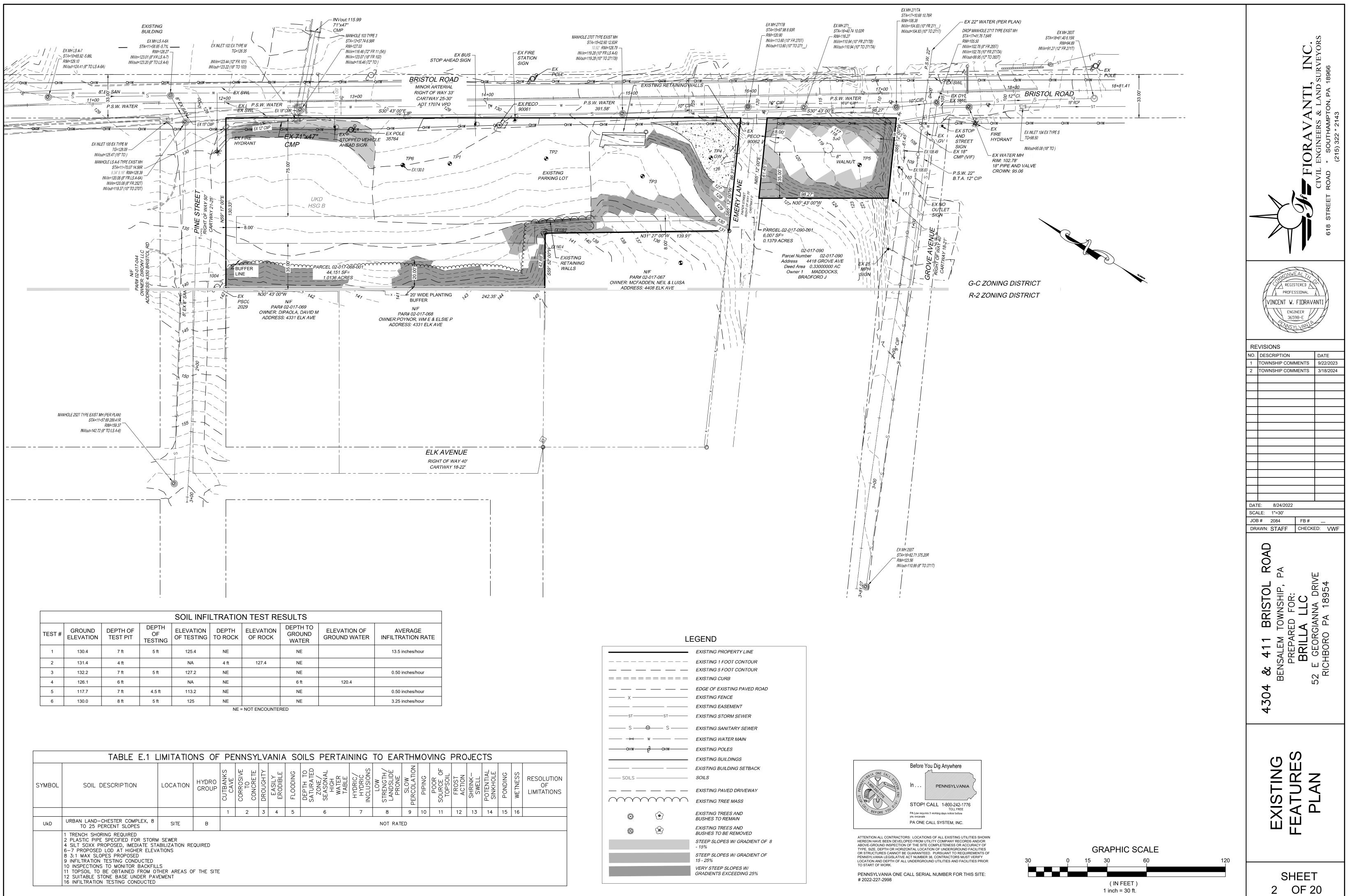

#	Local	Line	COMMENT	RESPONSE	Reference
7	5		Sec. 201-111. – Sidewalks. a. Sidewalks should be provided; approximately 489 feet along East Bristol Road and 61 feet along Grove Avenue, and 130 feet along Pine Street. The applicant requests a waiver to pay a fee in lieu of installing the sidewalk.	information only	<u>Sheet (s)</u> na
8	6		 Sec. 201-112. – Motor vehicle parking facilities. a. The proposed dead end parking area for Lot 1 does not provide sufficient back-up area for the end stalls and should be redesigned. A vehicle turning plan illustrates that a large SUV can make the maneuvers for lot 1. The applicant seeks a waiver for this condition for lot 2. i. This office supports this action and the applicant shall install a sign for Lot 2 indicating that the parking is private parking. Update the plans. 	a information only b Added a sign	na 5
			C. STORMWATER MANAGEMENT ORDINANCE COMMENTS		
9	1		 Sec. 196-31. – General requirements. a. One of the infiltration basins, the one nearest the loading parking space for Lot 1, does not meet the recommended range for applicable infiltration rates to be used in a PADEP SWM BMP. 	An additional field test that has been completed. Test location 6 The tested rate is 3.25 inches/hour. The assumed rate for Seepage Bed 1B is 1.0 inches/hour. Therefore Seepage Bed 1B is considered adequate without further analysis.	2, 18
10	2		 2. Sec. 196-61. – Design criteria. a. A note was needed to the plans explain that any increase in runoff may require necessary corrective measures, and the costs for such measures will be borne entirely by the developer. b. Storm pipes or other structures shall be reinforced concrete pipe have a minimum grade of ½ 0/0 and a minimum inside diameter of 18 inches. The proposed stormwater pipe has varying sizes of HDPE and the applicant requests a waiver of this standard. c. The minimum cover over the pipe shall be two (2) feet; a minimum of one-half (0.5) foot below subgrade. The proposed storm drain does not meet these criteria and the applicant requests a waiver. 	Added Note 10 information only information only	1
			DESIGN CONDITIONS		

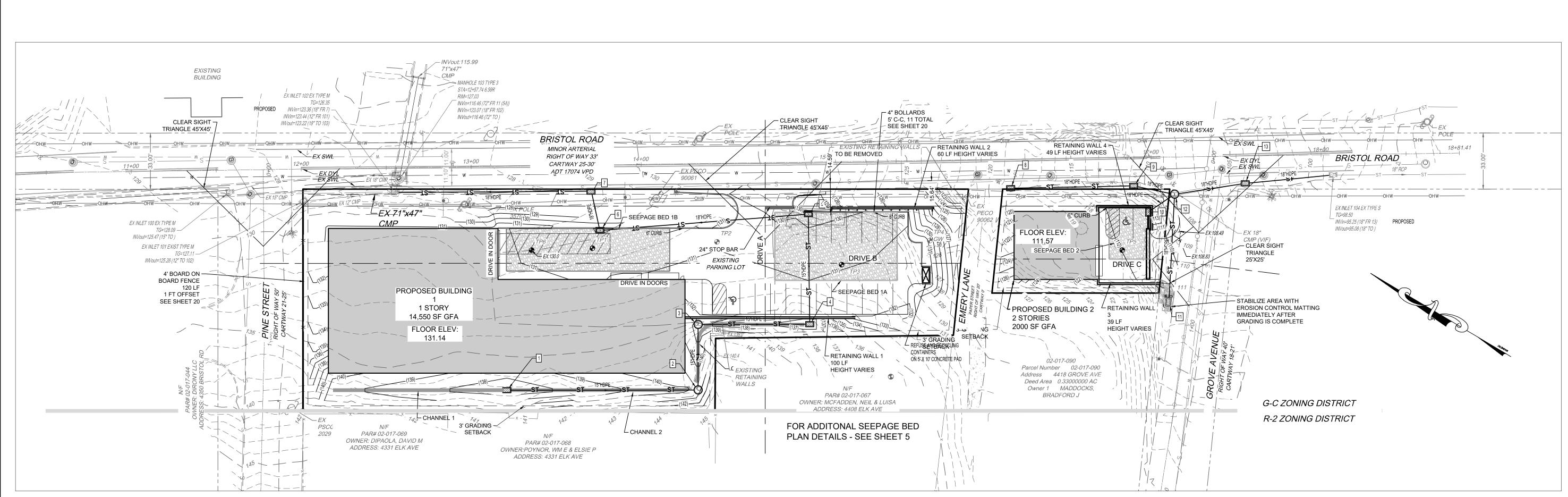
2084 Brilla LLC

#	Local	Line	COMMENT	RESPONSE	Reference Sheet (s)
11	1		 DESIGN CONDITIONS The following is a list of design conditions of the Zoning Hearing Board decision, dated February 8, 2022: 1. Redevelopment must be generally consistent with the Site Plan/Zoning Exhibit, prepared by Fiorvanti, Inc. dated 07/26/2021, last revised 12/10/2021. 2. No access to the subject lot from Pine Street. 3. No building doors facing Pine Street. 4. Placement of fencing along Pine Street to discourage access from Pine Street. 5. Placement of additional screen planting along Pine Street. 6. No deliveries by vehicles with gross vehicle weight over 10,000 pounds. 7. No public access to the private garage on the small lot. 	information only	na
			GRANTED VARIANCES		
12	1		 The following is a list of variances granted on February 8, 2022: 1. Sec. 232-55. – To allow for disturbance of manmade steep slopes. 2. Sec. 232-380. – To permit a Warehouse Distribution (Lot 1) 3. Sec. 232-380. – To permit a Personal Storage Garage (Lot 2) 4. Sec. 232-381.(3)(a) – To permit front yard setbacks of 23.1 feet, 53.1 feet, and 13.13 feet where 75 feet is otherwise required. 5. Sec. 232-381.(3)(c) – To permit rear yard setbacks of 22.2 feet, 22.2 feet, and 8 feet, where 35 feet is otherwise required. 6. Sec. 232-381.(1) – To permit Lot 2 to have a minimum area of 6007 square feet, where 7200 square feet is the minimum (existing nonconformity) 7. Sec. 232-593. – A 75-foot yard shall be required, when adjacent to a residential district, measured from the rear of the 20-foot bufferyard and planting strip. A variance has been granted to not require the 75-foot yard adjacent to the residential district. 	information only	na
			WAIVERS		

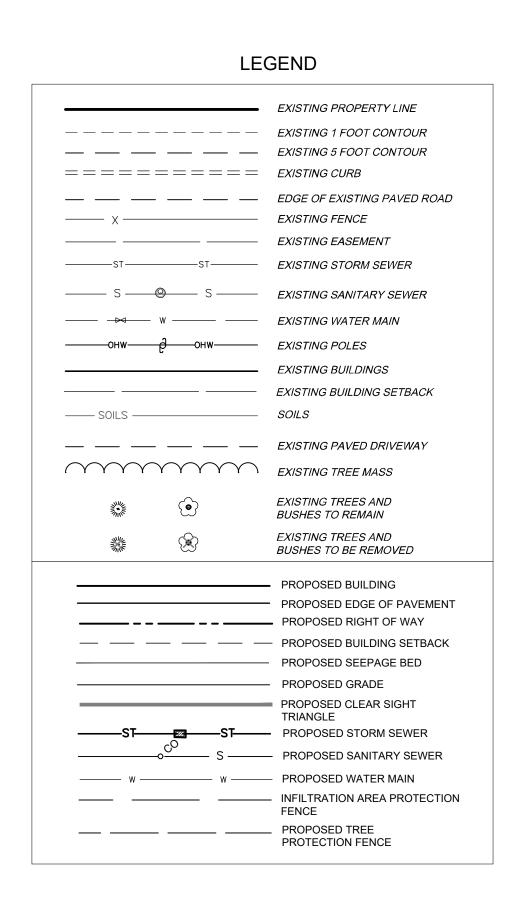
#	Local	Line COMMENT	RESPONSE	Reference Sheet (s)	
13	1	 The following is a list of requested waivers from the applicant: 1. Sec. 196-31(k) – Drainage of storage facilities; volume and control rate 2. Sec. 201-104(b)(6) – Dedication of additional ROW 3. Sec. 201-41(d)(9) – Manmade features within 400' 4. Sec. 201-62(a) – Preliminary and final land development plan 5. Sec. 201-110(a) and (b) – Curbs 6. Sec. 201-111(a) – Sidewalks 7. Sec. 201-112(d) – Planting strip, between parking area and building 8. Sec. 201-112(e) – Sufficient backup area, dead-end parking areas 9. Sec. 201-112(h) – Parking areas to be set back minimum of 15' from Ultimate ROW and property lines 10. Sec. 201-112(i) – Nonresidential parking areas/access driveways shall be paved/ curbed 11. Sec. 201-112(p) – Screening for parking facilities parallel to public ROW 13. Sec. 201-114(e) – Bufferyard and planting strip 	information only	na	
		Land Development Traffic Review		1/12/2024	
14	1	Bristol Road is a state route. A PennDOT Highway Occupancy Permit (HOP) will need to be obtained for any work performed in the state's right-of-way. Please submit plans and correspondence to the Township for review and approval.	HOP application is in process	na	
15	2	information is received from the developer. We are currently working with the developers engineer to receive this information.	information only	na	
16	3	The proposed shoulder grade at drive A should be discussed with PennDOT. It is our experience the Department would keep the existing roadway slope through the shoulder or break the shoulder down not up as shown on the plans.	The shoulder does not break in an up direction. From the edge of the travel lane the pavement breaks down to a gutter line then up to a future sidewalk crossing	12	


#	Local	Line	COMMENT	RESPONSE	Reference Sheet (s)
17	4		The sight distance should be calculated for the driveway based on the appropriate grades and speeds using PennDOT's sight distance formula. The following sight distance note should be provided for the driveway. "All sight distance obstructions (including but not limited to embankments and vegetation) shall be removed by the applicant to provide a minimum of xxx' feet of sight distance to the left and xxx' feet of sight distance to the right for a driver exiting the proposed driveway onto Road. The driveway must be considered to bepositioned 10' from the near edge of the closest highway through travel lane at aneye height of three feet-six inches (3'-6") above the pavement surface. The point sighted by the exiting driver shall be three feet-six inches (3'-6") above the pavement surface located in the center of the closest highway travel lane designated for useby approaching traffic. This sight distance shall be maintained by the applicantand/or the applicant's successors and assignors". Sight distance triangles indicating the heretofore-described sight distance should be shown to ensure that the existing/proposed landscaping will not restrict sight distance.	Added Note 1	3
18	5		The following general notes should be included on the plan: a. "All proposed pedestrian facilities reflected on these plans shall be constructed to comply with the following standards: i. PennDOT Design Manual 2, Chapter 6. ii. PennDOT Standards for Roadway Construction, Publication 72M, RC-67M. iii. U.S. Access Board, Public Right of Way Accessibility Guidelines (PROWAG) and 2010 ADA Standards for Accessible Design."	Added Note 2	3
19	6		Provide truck turning templates for the largest Township emergency vehicle. Note, the fire truck template used needs to be revised to the Township's largest emergency vehicle.	A larger truck has been used.	6
20	7		Revise the retaining wall detail to show the correct grading behind the wall, bollards and parking lot location. Note, a full review of the wall calculations will need to be completed by our office.	A second detail has been added for the wall with parking above. Structural design is in process with Joe Keil P.E.	5


(IN FEET) 1 inch = 30 ft.

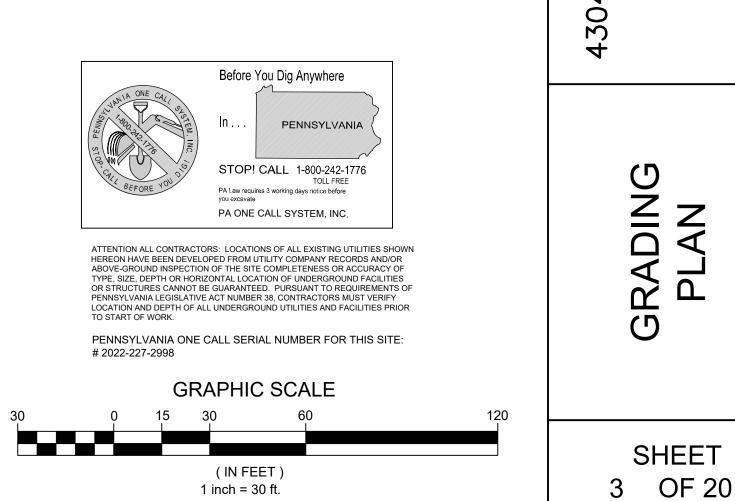

0

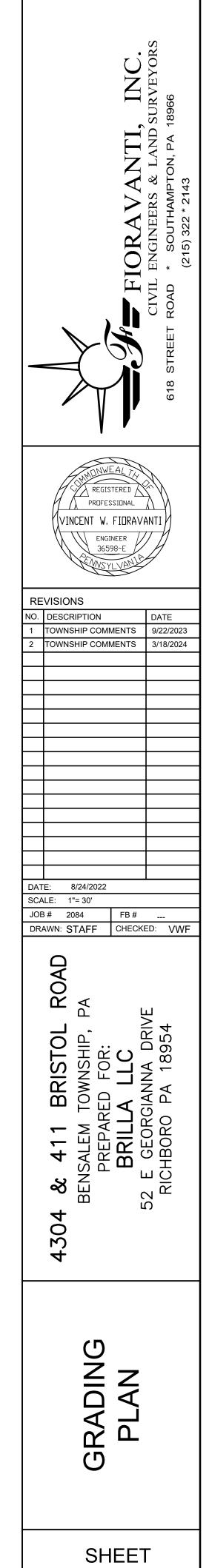
			LOT 1 ACCESS EASEMENT 10' WIDE AR SIGHT 3911 SF NGLE 45'X45' 			CLEAR SIG				
	/	<u> </u>			 RETAINING WALL 4 ¬ LF HEIGHT VARIES		SS D	– EX SWL		18+00
		0 0	-15·B2 	HEIGHT VARIES		EASEMENT 10' WIDE 983 SF		EX DYL		B
	4" STOP BAR <i>EXISTING</i> <i>PARKING LOT</i> (16.00' - 9.00		R=5.00' R=5.00' CR=5.00'	RONT YARD 50 FRONT YARD 50 FRONT YARD 50 FRONT YARD 50 FLOOR EL 111.57 SEEPA ST - SGN SEEPA ST - SGN ST - SGN SEEPA ST - SGN ST -	GE BED 2	998.27 A5 BRIVE C DRIVE C			NR SIGHT NGLE 55' -0+25	
 17.8	42.69' 1 59° 52' 00"W		N31° 27' 00"W 139.91' REFUSE AND RECYCLE RETAINING WALL 1 100 LF HEIGHT VARIES	PAD 02- PAD 02- Parcel Numb Address Deed Area	3 39 001 017-090 er 02-017-090 4418 GROVE AVE 0.33000000 AC		ROVE AVENUE	7WAY 18-2		
	S:		N/F PAR# 02-017-067 OWNER: MCFADDEN, NEIL & LUISA		MADDOCKS, DFORD J	j / / /	GRO RIGH		G-C ZOI	NING DISTR
		Ť	ADDRESS: 4408 ELK AVE						R-2 ZON	NING DISTR
			<u> </u>							
	CODE SE		REQUIREMENT	2084	DESCRIPTIC	DN/JUSTIFICATION	 			
	196-31		STORAGE FACILITIES SHOULD COMPLETELY DRAIN BOT RATE CONTROL CAPACITIES OVER A PERIOD OF TIME NO		DRAIN TIME LESS TI	HAN 24 HOURS IS NOT LL DRAINAGE AREAS AND	·			
	150-51	(K)	THAN 72 HOURS FROM THE END OF THE DESIGN STORM STORM SEWERS (PIPES OR OTHER STRUCTURES) SHAL		SMALL STORMS.	AL AND SIZE PROPOSED			SH	
	196-61 b(1) a	ind (12)	PIPE HAVE A MINIMUM GRADE OF ½ PERCENT AND A MIN INCHES A MINIMUM OF TWO FEET OF COVER SHALL BE MAINTAIL		WAIVER OF MINIMU PROPOSED	M COVER TO 1-2 FEET	No 1	SITE PLA	N	SHEET TITL
			DRAIN PIPES. THE TOP OF STORM DRAIN PIPES SHALL B BELOW SUBGRADE EVALUATION				2	EXISTING		PLAN
	201-104 (I	o) (6)	WHERE A SUBDIVISION AND/OR LAND DEVELOPMENT AE STREET OF INADEQUATE RIGHT-OF-WAY WIDTH, ADDITION BE DEDICATED TO CONFORM TO THE STANDARDS SET F	ONAL RIGHT-OF-WAY WIDTH SHALL	BRISTOL ROAD 60' F 10 FOOT WIDE EASE	-	4	-	DETAILS	
			ALL EXISTING SEWER LINES, WATER LINES, FIRE HYDRA		WAIVER REQUESTE		5 6	UTILITY F	PLAN TURNING PL	AN
	201-41 (d) (9)	LINES, CULVERTS, BRIDGES, RAILROADS, OR OTHER MA PROPOSED SUBDIVISION AND/OR LAND DEVELOPMENT BOUNDARIES OF THE PROPOSED SUBDIVISION AND/OR	AND WITHIN 400 FEET OF THE	DEPICTION OF OFF PROPOSE SPECIFIC	SITE FEATURES.	7		-	N AND PROFILE
			LESSER DISTANCE WITHIN WHICH THE TOWNSHIP ENGI NECESSARY INFORMATION CAN BE PROVIDED	IEER DETERMINES THAT ALL	REQUESTED BY TH	E TOWNSHIP ENGINEER	9	POST CC	NSTRUCTION	N STORMWATER
	201-62	(a)	UPON APPROVAL OF THE PRELIMINARY PLAN BY THE BE APPLICANT MAY SUBMIT A FINAL SUBDIVISION AND/OR L	,	APPLICANT REQUES	STS PRELIMINARY AND	10 11		APE PLAN	JLATION
			NO PROPOSED GRADINGS SHALL BE PERMITTED WITHIN	THREE FEET OF ANY SITE	GRADING IS PROPC	SED WITHIN 3 FEET OF	12 13			
	201-10	6	PROPERTY LINE, AND IN NO CASE SHALL CUT AND FILLS PROPERTY.	ENDANGER ADJOINING	RIGHT OF WAYS IN A	A FEW SMALL AREAS	14	BRISTOL	ROAD PROF	
	201-110 (a) 201-111	~ /	CURBS SHALL BE PROVIDED ALONG STREETS BY THE D SIDEWALKS SHALL BE PROVIDED ALONG STREETS BY TH			VIDED FOR IN CODE	15 16	POST CC	NSTRUCTION	ENTATION CONT
	201-112	(d)	FROM THE REQUIREMENT TO PROVIDE A PLANTING STR TEN FEET AND MINIMUM WIDTH OF SEVEN FEET SHALL I	BE PROVIDED BETWEEN THE EDGE		G ONLY DUE TO STEEP	17	EROSION	I AND SEDIMI	
			OF THE PARKING AREA AND THE OUTSIDE WALL OF THE			IS NOT OPEN TO THE	18 19	-		GEMENT DETAILS
)	201-112		AREA FOR THE END STALLS OF THE PARKING AREA EXCEPT AT ENTRANCE AND EXIT DRIVES, ALL PARKING		PUBLIC 8.34 FEET PROPOSE	ED CONSISTENT WITH	20	SITE DET	AILS 2	
1	201-112	(h)	201-112(D) SHALL BE SET BACK FROM THE FUTURE RIGHT-OF-WAY LINE AND ALL PROPERTY L	NES AT LEAST 15 FEET						LEGEND
2	201-112	(i)	ALL NONRESIDENTIAL PARKING AREAS AND ACCESS DRIVEWAYS SHALL BE PAVED AND CURBED.		PARKING AREAS.	ED ON ALL DRIVES AND				EXIST
			ALL OFF-STREET COMMERCIAL PARKING FACILITIES WH RIGHT-OF-WAY SHALL BE SCREENED FROM VIEW BY ME		PROPOSE PLANTING	G ONLY DUE TO STEEP				EXIST
3	201-112	(p)	MASONRY OR BRICK WALLS, OR A COMBINATION OF BO	- ,						
ł	201-114	(e)	ADJACENT RESIDENTIAL DISTRICTS SHALL BE PROTECT NONRESIDENTIAL USES, AND THERE SHALL BE PROVIDE SUBDIVISIONS AND LAND DEVELOPMENTS A BUFFERYAI ACCORDANCE WITH ARTICLE XIII, SECTIONS 232-592 ANI ORDINANCE	D IN ALL NONRESIDENTIAL RD AND PLANTING STRIP IN	AND TO WITHIN 2 FE	G STRIP 20 FEET WIDE EET OF THE PROPERTY CE WITH A VARIANCE	Γ	IMI	PERVIO	US AREAS
			VARIANCES GRA	NTED					EM	LOT 1
ŧ	CODE SECTION			CONDITION	S	DATE	F	PARKING, W PADS	ALKS AND	11470
		LOT (LARGE I LOT 1)		1 . REDEVELOPMENT MUST BE GI CONSISTENT WITH THE SITE PLA			-	BUILDINGS TOTAL		14550 26020
1	232-380(1)	B. A PERSON (SMALL LOT; AND,	AL STORAGE GARAGE ON THE 6,007 SQUARE FOOT LOT LOT 2)	PREPARED BY FIORVANTI, INC., E LAST REVISED 12/10/2021	,			LOT AREA	OVERAGE	44151 32.96%
		TO PERMIT F	RONT YARD SETBACKS OF 23.1 FEET, 53.1 FEET AND 13.13	2. NO ACCESS TO THE SUBJECT I STREET.	OT FROM PINE			MPERVIOU	COVERAGE	58.93%
2	232.381 (3)(a)	FEET, WHERE	E 75 FEET IS OTHERWISE REQUIRED.	3. NO BUILDING DOORS FACING F						
3	232.381 (3)(c)	WHERE 35 FE	EET IS OTHERWISE REQUIRED.	4. PLACEMENT OF FENCING ALO DISCOURAGE ACCESS FROM PIN	E STREET.	FEBRUARY 8. 2022				
ţ	232.381(1)		OT 2 TO HAVE A MINIMUM AREA OF 6,007 SQUARE FEET,) SQUARE FEET IS THE MINIMUM (EXISTING 2MITY).	5. PLACEMENT OF ADDITIONAL S ALONG PINE STREET.		, ULL		1		F
5	232.593	TO NOT REQ	UIRE A 75 FOOT YARD AREA ADJACENT TO A RESIDENTIAL	6. NO DELIVERIES BY VEHICLES V VEHICLE WEIGHT OVER 10,000 PG			SE	L EGMENT	LENGTH	
			OR DISTURBANCE OF MANMADE STEEP SLOPES WITH THE PLAN, AS FOLLOWS, TO WIT: 92.6% OF STEEP	7. HOURS OF OPERATION FOR WAREHOUSE/DISTRIBUTION USE MAXIMUM OF 9AM TO 5 PM, MONI				A1	391.58	N30° 43' 00"W
3	232-55	SLOPES 8 TO STEEP SLOPE	9 15%; 80.7% OF STEEP SLOPES 15 TO 25%; 75.2% OF ES 25% OR GREATER, CONSISTENT WITH THE SITE	RIDAY; THERE SHALL BE NO WE	EKEND HOURS.			A2 A3	10.05 390.54	N65° 12' 00"E S30° 43' 00"E
			G EXHIBIT PREPARED BY NC., DATED 07/26/2021, LAST REVISED 12/01/2021	8. NO PUBLIC ACCESS TO THE PE THE SMALL LOT;	WATE GARAGE UN			A4	10.00	S59° 17' 00"W
7	232-586 (d)(3)(b)		HE PROPOSED PARKING AREAS TO BE SITUATED WITHIN IEARBY PUBLIC ROADWAYS, AS DEPICTED ON THE PLAN					A5 A6		N30° 43' 00"W N65° 12' 00"E
	(d)(3)(b)	TO NOT REQ	UIRE AN ADDITIONAL 20 FOOT BUFFER YARD FROM THE	NONE		DECEMBER 1, 2022		A7 A8	98.27 10.05	S30° 43' 00"E S65° 12' 00"W
3	232-592 (1)	RECEIVED RE	PARCELS TO THE REAR, WHERE APPLICANT ALREADY ELIEF TO NOT REQUIRE A 75 FEET BUFFER YARD AND IS PROVIDING A 22.2 FOOT LANDSCAPED SETBACK.						.0.00	00 W

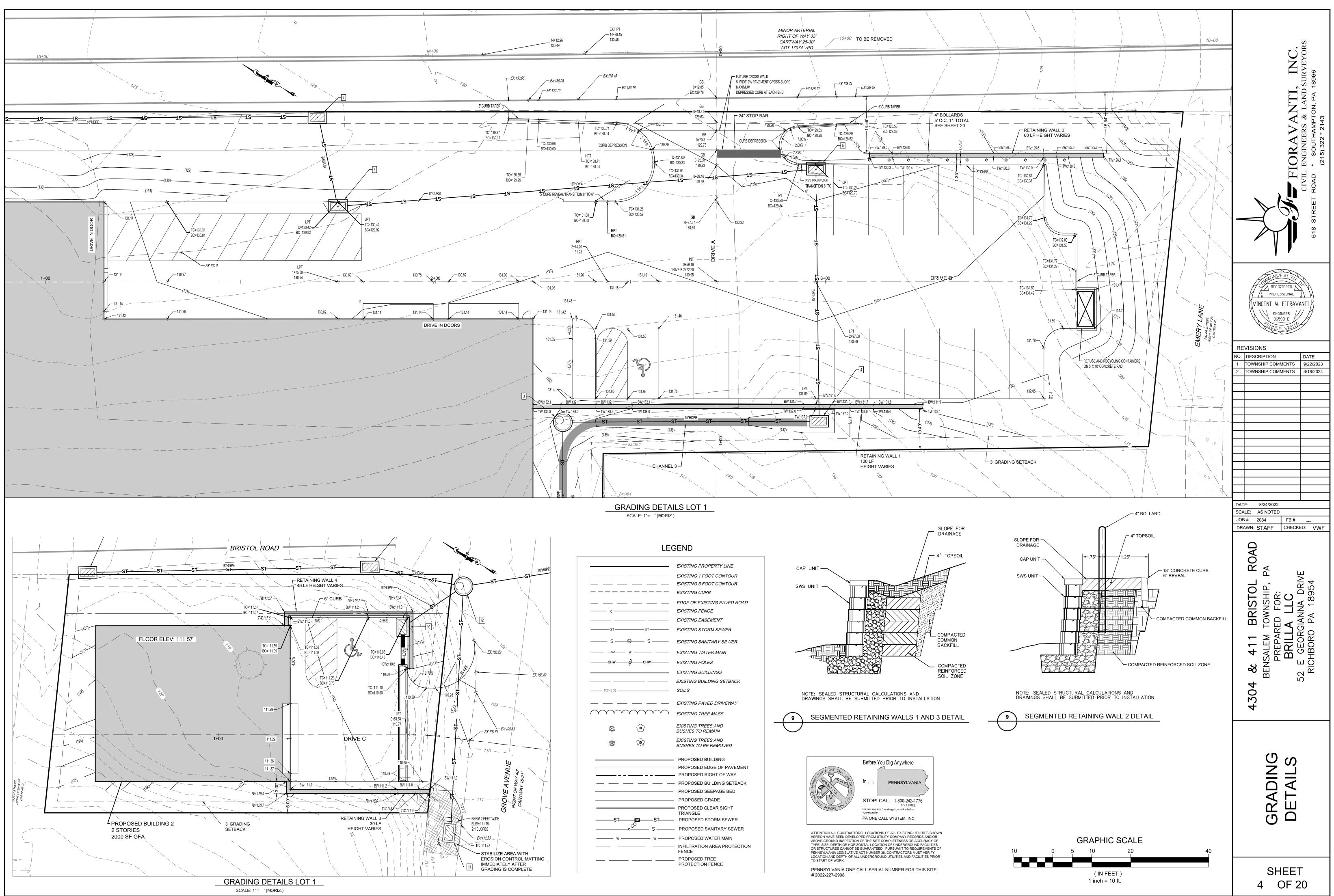

T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 01 Site, 3/19/2024 12:39 PM

GRADING PLAN

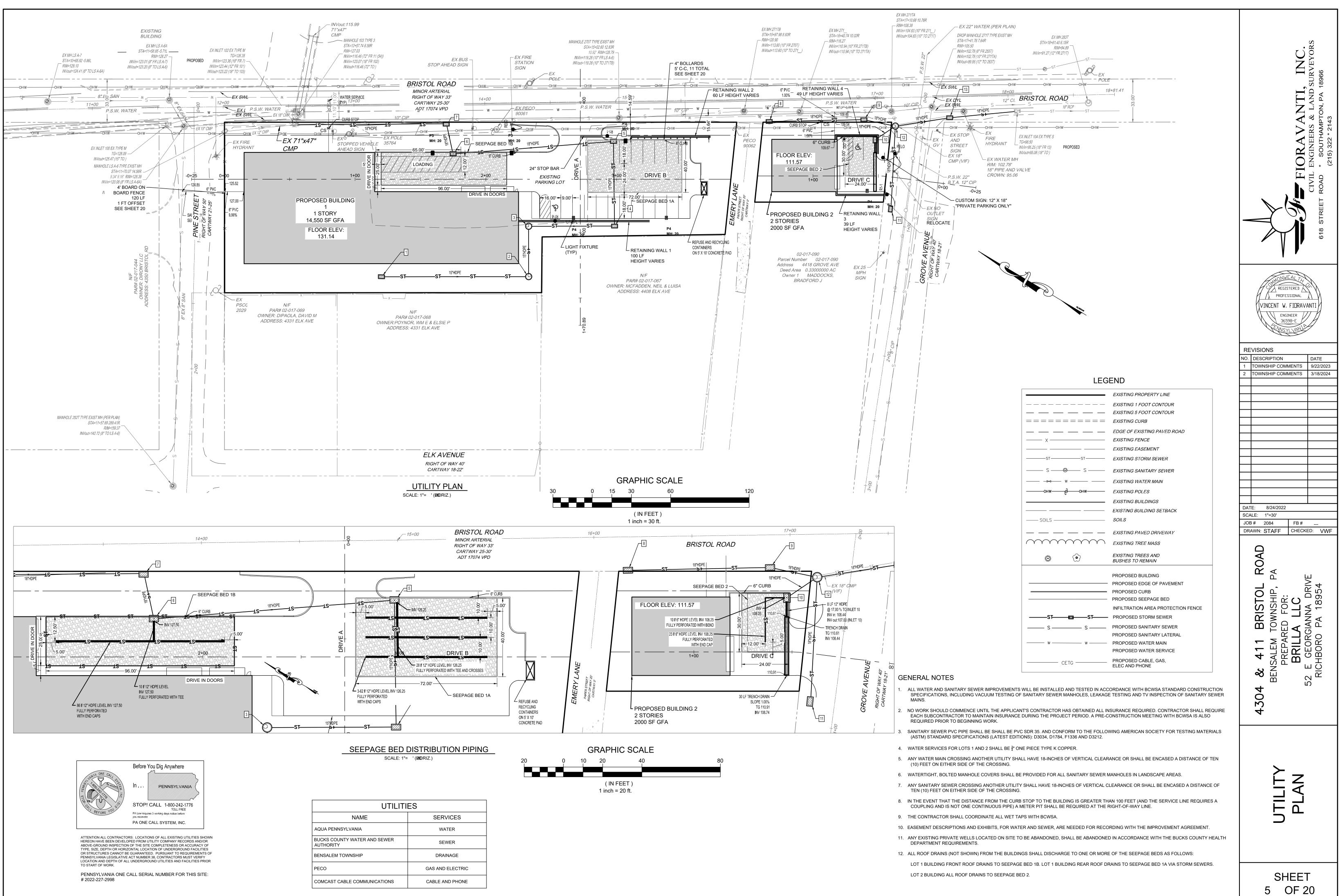
SCALE: 1"= '(BIODRIZ.)

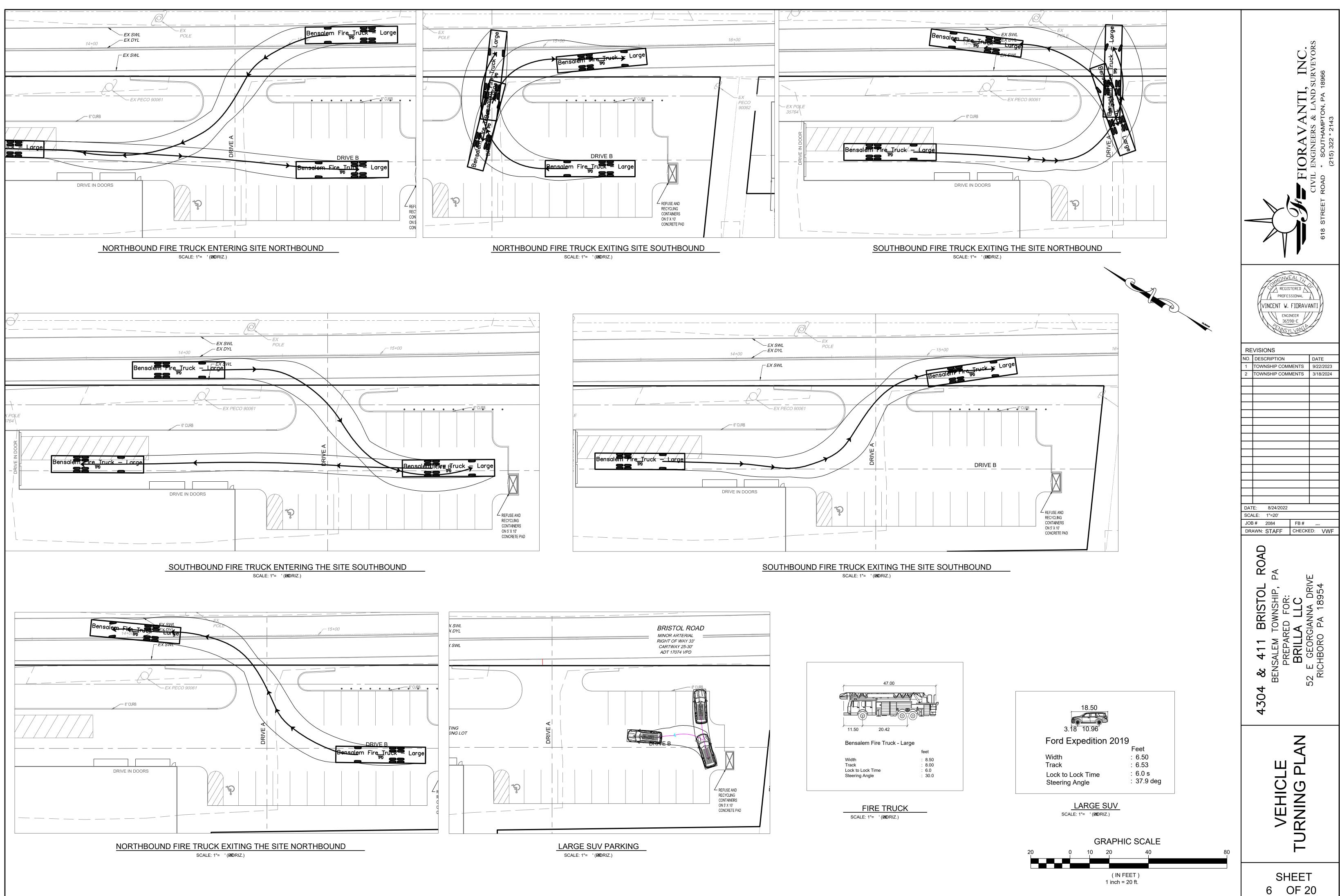

GENERAL NOTES

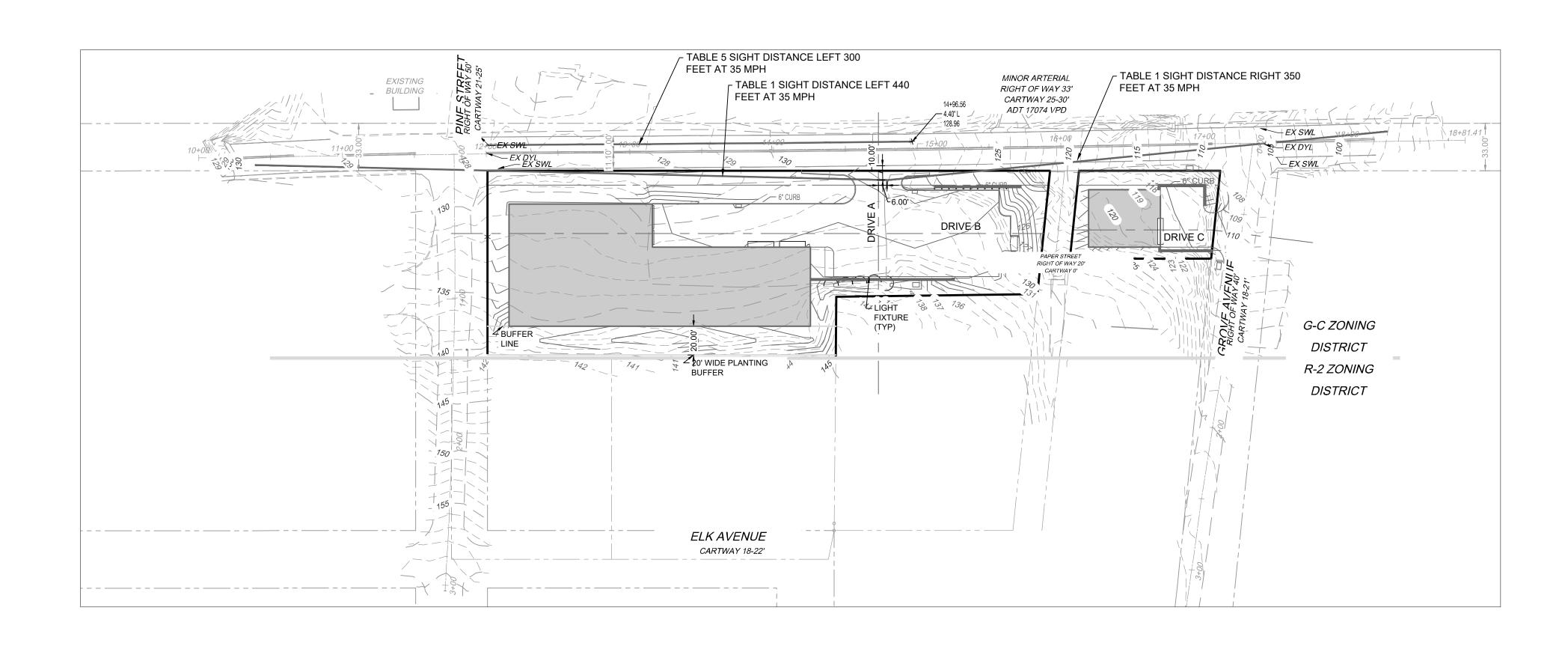

1. ALL SIGHT DISTANCE OBSTRUCTIONS (INCLUDING BUT NOT LIMITED TO EMBANKMENTS AND VEGETATION) SHALL BE REMOVED BY THE APPLICANT TO PROVIDE A MINIMUM OF 440' FEET OF SIGHT DISTANCE TO THE LEFT AND 350' FEET OF SIGHT DISTANCE TO THE RIGHT FOR A DRIVER EXITING THE PROPOSED DRIVEWAY ONTO ROAD. THE DRIVEWAY MUST BE CONSIDERED TO BEPOSITIONED 10' FROM THE NEAR EDGE OF THE CLOSEST HIGHWAY THROUGH TRAVEL LANE AT ANEYE HEIGHT OF THREE FEET-SIX INCHES (3'-6") ABOVE THE PAVEMENT SURFACE. THE POINT SIGHTED BY THE EXITING DRIVER SHALL BE THREE FEET-SIX INCHES (3'-6") ABOVE THE PAVEMENT SURFACE LOCATED IN THE CENTER OF THE CLOSEST HIGHWAY TRAVEL LANE DESIGNATED FOR USEBY APPROACHING TRAFFIC. THIS SIGHT DISTANCE SHALL BE MAINTAINED BY THE APPLICANTAND/OR THE APPLICANT'S SUCCESSORS AND ASSIGNORS.

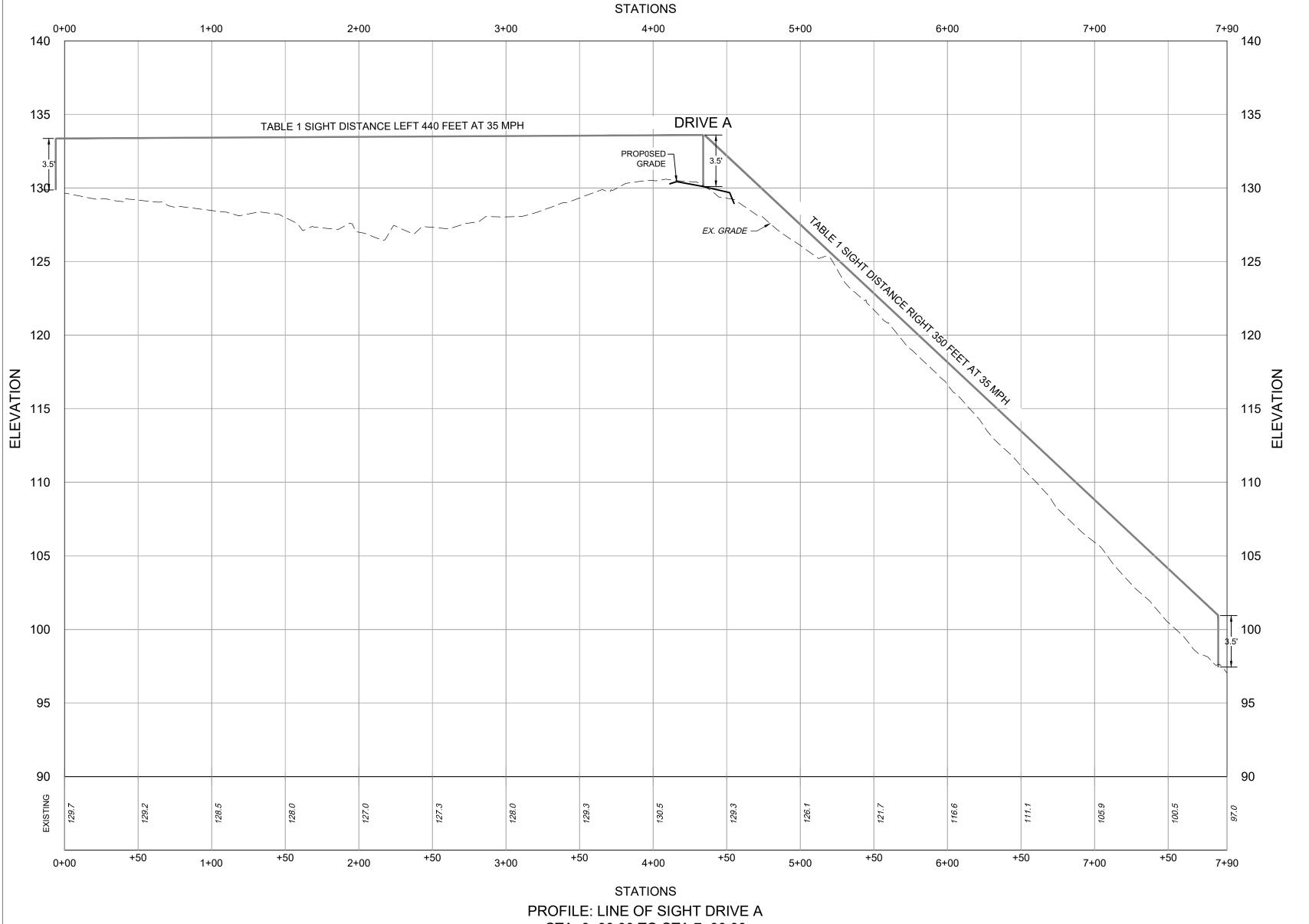

2. ALL PROPOSED PEDESTRIAN FACILITIES REFLECTED ON THESE PLANS SHALL BE CONSTRUCTED TO COMPLY WITH THE FOLLOWING STANDARDS:

I. PENNDOT DESIGN MANUAL 2, CHAPTER 6.

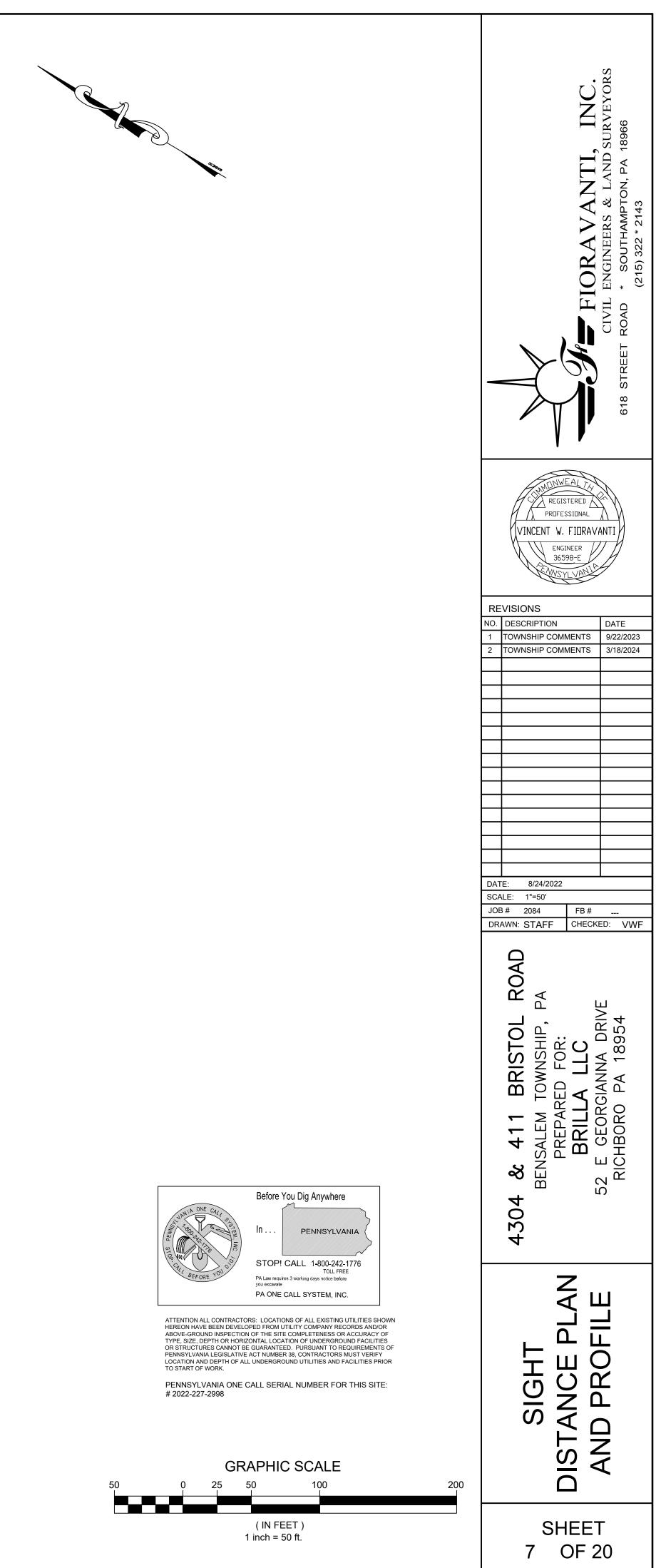

- II. PENNDOT STANDARDS FOR ROADWAY CONSTRUCTION, PUBLICATION 72M, RC-67M.
- III. U.S. ACCESS BOARD, PUBLIC RIGHT OF WAY ACCESSIBILITY GUIDELINES (PROWAG) AND 2010 ADA STANDARDS FOR ACCESSIBLE DESIGN."

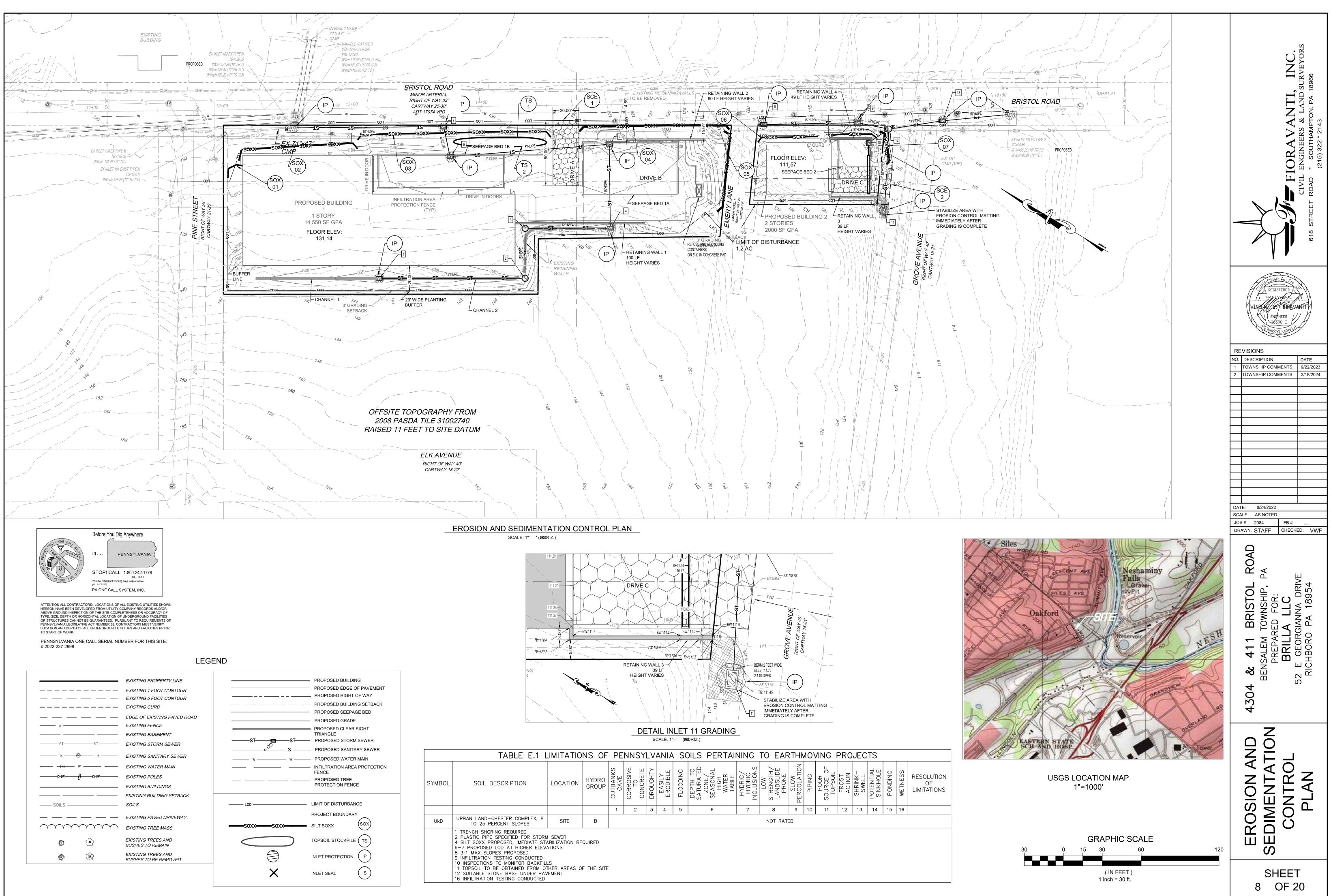




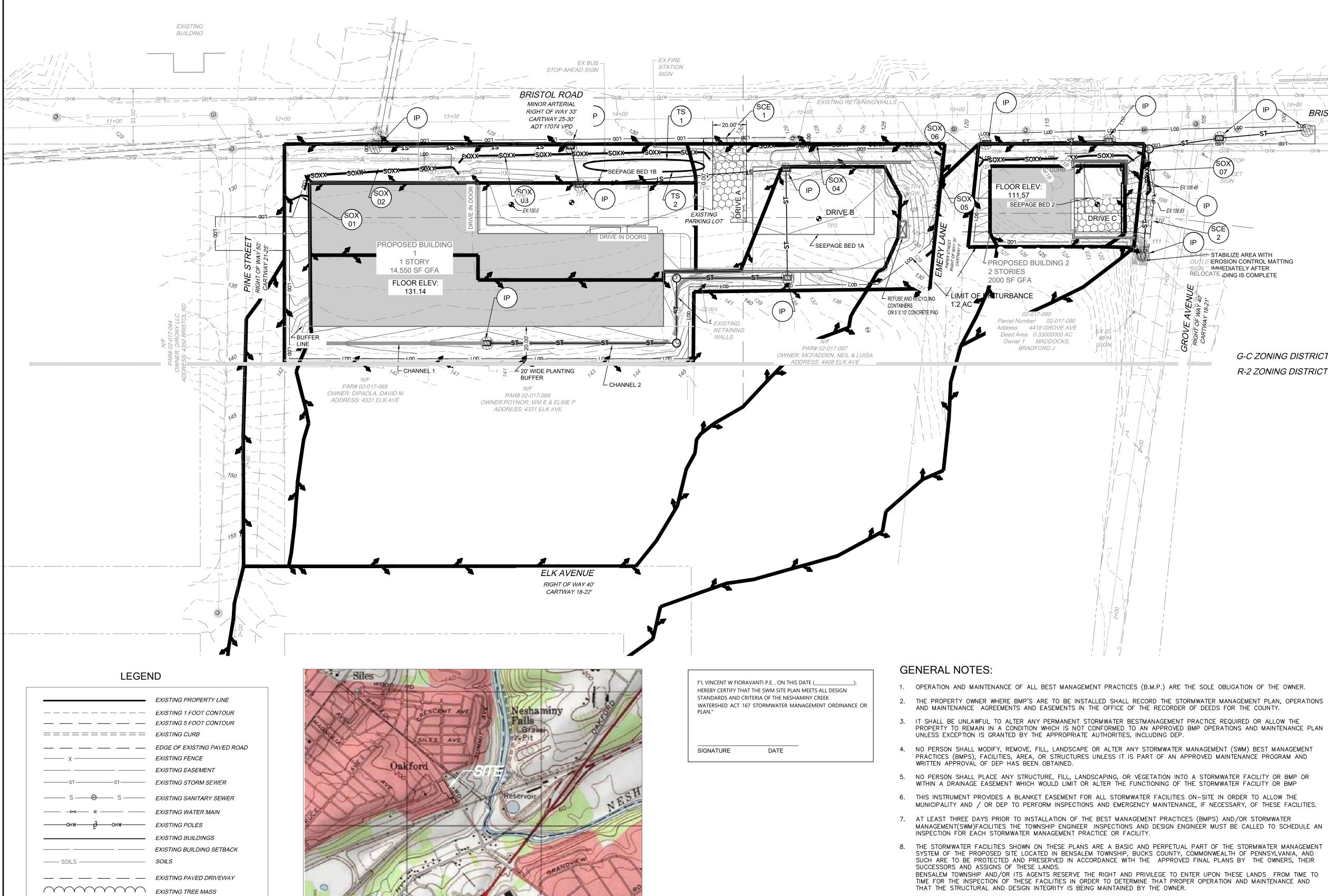


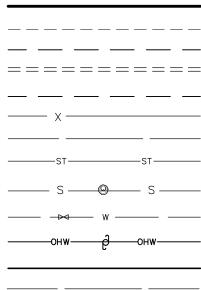
T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 04 Grade Det, 3/19/2024 12:39 PM

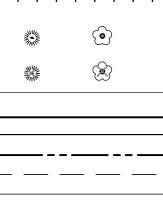




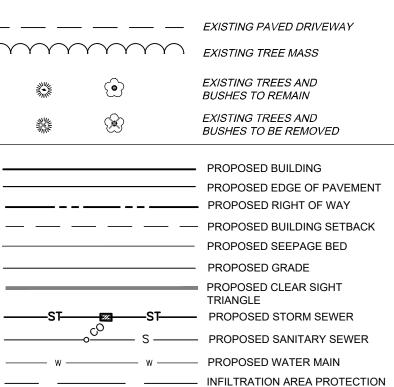
STA: 0+00.00 TO STA:7+90.00

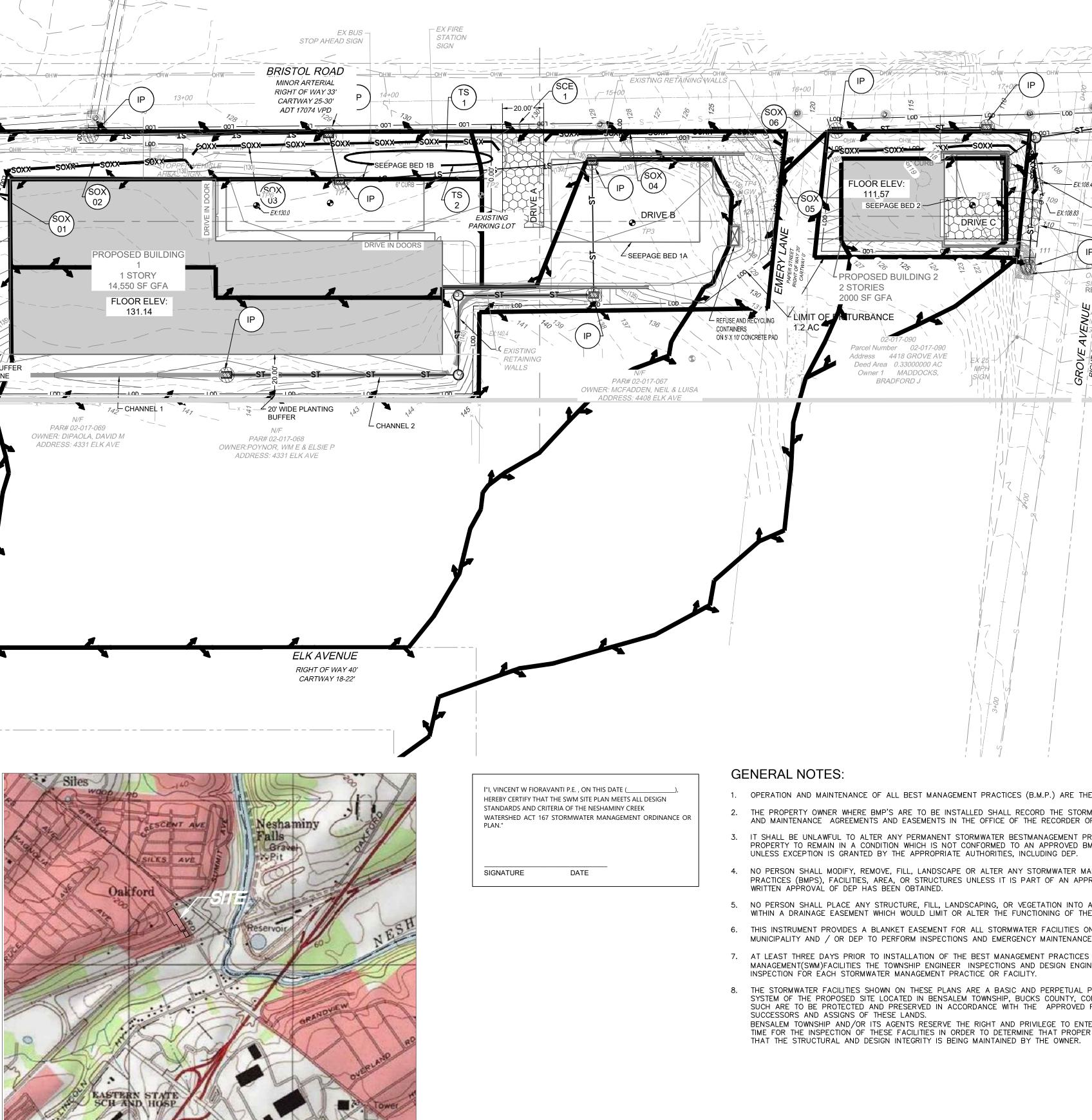



T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 07 Sight, 3/19/2024 12:39 PM



									110	RADING	_										
						S	CALE: 1"	= '(#	(ORIZ.)												
	TABLE E.1 L		NS OF	PE	INNS`	YLV	ANIA	S	DILS	PERTAI	NING	TO EAF	RTH	10\	/ING	PRO	JEC	TS			
SYMBOL	SOIL DESCRIPTION	LOCATION	HYDRO GROUP	CUTBANKS CAVE	CORROSIVE TO CONCRETE	DROUGHTY	EASILY ERODIBLE	FLOODING	DEPTH TO SATURATED ZONF /	SEASONAL HIGH WATER TABLE	HYDRIC/ HYDRIC/ INCLUSIONS	LOW STRENGTH/ LANDSLIDE PRONE	SLOW PERCOLATION	PIPING	POOR SOURCE OF TOPSOIL	FROST ACTION	SHRINK- SWELL	POTENTIAL SINKHOLE	PONDING	WETNESS	RE LIN
				1	2	3	4	5		6	7	8	9	10	11	12	13	14	15	16	
UkD	URBAN LAND-CHESTER COMPLEX, 8 TO 25 PERCENT SLOPES	SITE	В									NOT RAT	ED								
	1 TRENCH SHORING REQUIRED 2 PLASTIC PIPE SPECIFIED FOR STORM 4 SILT SOXX PROPOSED, IMEDIATE ST/ 6-7 PROPOSED LOD AT HIGHER ELEV/	ABILIZATION RE	QUIRED																		


T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 08 E&S, 3/19/2024 12:39 PM



FENCE

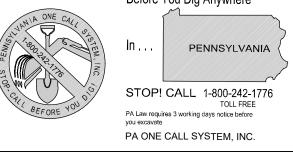
PROPOSED TREE

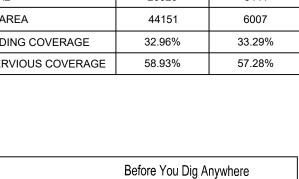
PROTECTION FENCE

POST-DEVELOPMENT DRAINAGE AREA

USGS LOCATION MAP 1"=1000'

GRAPHIC SCALE 120 (IN FEET 1 inch = 30 ft.

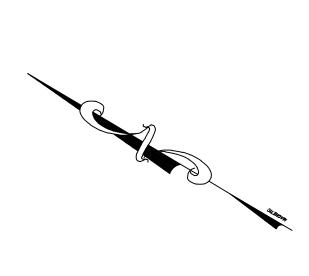

PA ONE CALL SYSTEM, INC. LOCATION AND DEPTH OF ALL UNDERGROUND UTILITIES AND FACILITIES PRIOR TO START OF WORK. PENNSYLVANIA ONE CALL SERIAL NUMBER FOR THIS SITE:


2022-227-2998

ATTENTION ALL CONTRACTORS: LOCATIONS OF ALL EXISTING UTILITIES SHOWN HEREON HAVE BEEN DEVELOPED FROM UTILITY COMPANY RECORDS AND/OR

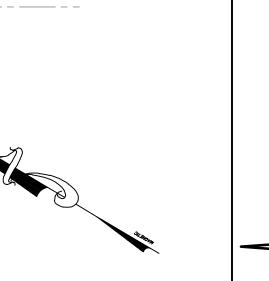
ABOVE-GROUND INSPECTION OF THE SITE COMPLETENESS OR ACCURACY OF TYPE, SIZE, DEPTH OR HORIZONTAL LOCATION OF UNDERGROUND FACILITIES OR STRUCTURES CANNOT BE GUARANTEED. PURSUANT TO REQUIREMENTS OF PENNSYLVANIA LEGISLATIVE ACT NUMBER 38, CONTRACTORS MUST VERIFY

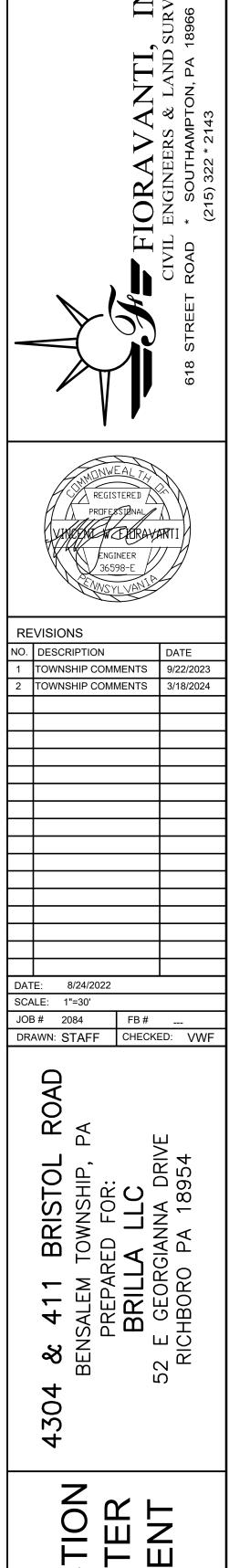
TOLL FREE PA Law requires 3 working days notice before you excavate


IMPERVIOU	IS AREAS ((sf)
ITEM	LOT 1	LOT 2
PARKING, WALKS AND PADS	11470	1441
BUILDINGS	14550	2000
TOTAL	26020	3441
LOT AREA	44151	6007
BUILDING COVERAGE	32.96%	33.29%
IMPERVIOUS COVERAGE	58.93%	57.28%

G-C ZONING DISTRICT R-2 ZONING DISTRICT

IMMEDIATELY AFTER RELOCATE DING IS COMPLETE


- STABILIZE AREA WITH ETEROSION CONTROL MATTING


BRISTOL ROAD

\ 18+81.41

--+---

Σ

Ш

4 Z

Š

 \checkmark

 \bigcirc

RU

Ζ

Ο

()

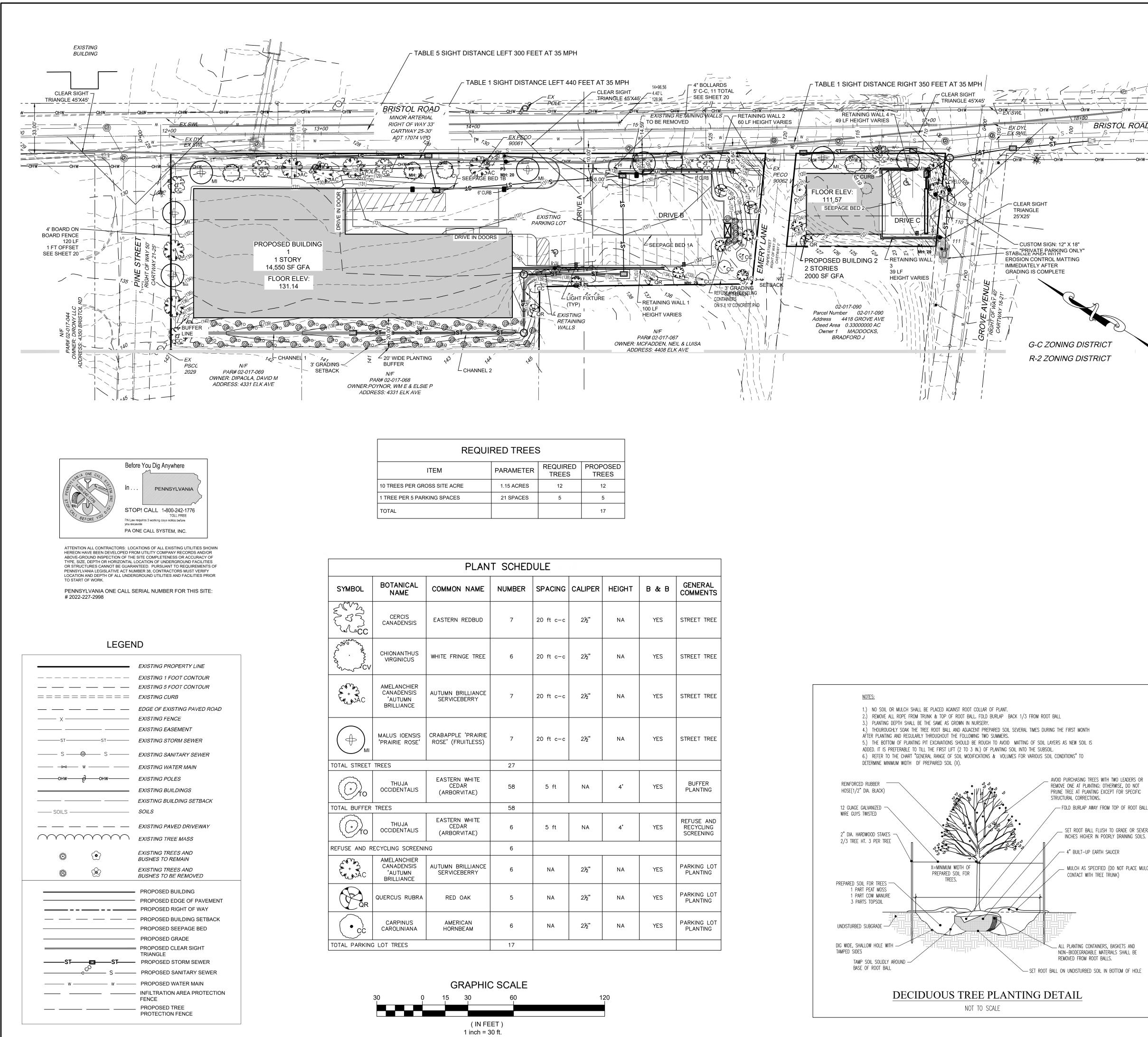
S

O

Ω

 \geq

 \leq


Ŷ

 \vdash

S

SHEET

OF 20

D TREES RAMETER REQUIRED PROPOSED				
ARAMETER	REQUIRED TREES	PROPOSED TREES		
1.15 ACRES	12	12		
21 SPACES	5	5		
		17		

SCHED	ULE)84			
IUMBER	SPACING	CALIPER	HEIGHT	B & B	GENERAL COMMENTS
7	20 ft c-c	2½"	NA	YES	STREET TREE
6	20 ft c-c	2½"	NA	YES	STREET TREE
7	20 ft c-c	21⁄2"	NA	YES	STREET TREE
7	20 ft c-c	2½"	NA	YES	STREET TREE
27		II			
58	5 ft	NA	4'	YES	BUFFER PLANTING
58					
6	5 ft	NA	4'	YES	REFUSE AND RECYCLING SCREENING
6					
6	NA	2½"	NA	YES	PARKING LOT PLANTING
5	NA	2½"	NA	YES	PARKING LOT PLANTING
6	NA	2½"	NA	YES	PARKING LOT PLANTING
17					

T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 10 Land, 3/19/2024 12:39 PM

NON-BIODEGRADABLE MATERIALS SHALL BE REMOVED FROM ROOT BALLS.

ALL PLANTING CONTAINERS, BASKETS AND

✓ 4" BUILT-UP EARTH SAUCER _ MULCH AS SPECIFIED (DO NOT PLACE MULCH IN CONTACT WITH TREE TRUNK)

SET ROOT BALL FLUSH TO GRADE OR SEVERAL INCHES HIGHER IN POORLY DRAINING SOILS.

REMOVE ONE AT PLANTING: OTHERWISE, DO NOT PRUNE TREE AT PLANTING EXCEPT FOR SPECIFIC STRUCTURAL CORRECTIONS.

——онм— BRISTOL ROAD + $S \rightarrow - +$ ------OHW-----——онw—

FIORAVANTI, INC. CIVIL ENGINEERS & LAND SURVEYORS 618 STREET ROAD * SOUTHAMPTON, PA 18966 (215) 322 * 2143	
REVISIONS NO. DESCRIPTION DATE 1 TOWNSHIP COMMENTS 3/18/2024	
DATE: 8/24/2022 SCALE: 1"=30' JOB # 2084 FB # DRAWN: STAFF CHECKED: VWF	
4304 & 411 BRISTOL ROAD BENSALEM TOWNSHIP, PA PREPARED FOR: BRILLA LLC 52 E GEORGIANNA DRIVE RICHBORO PA 18954	
LANDSCAPE PLAN	

SHEET

10 OF 20

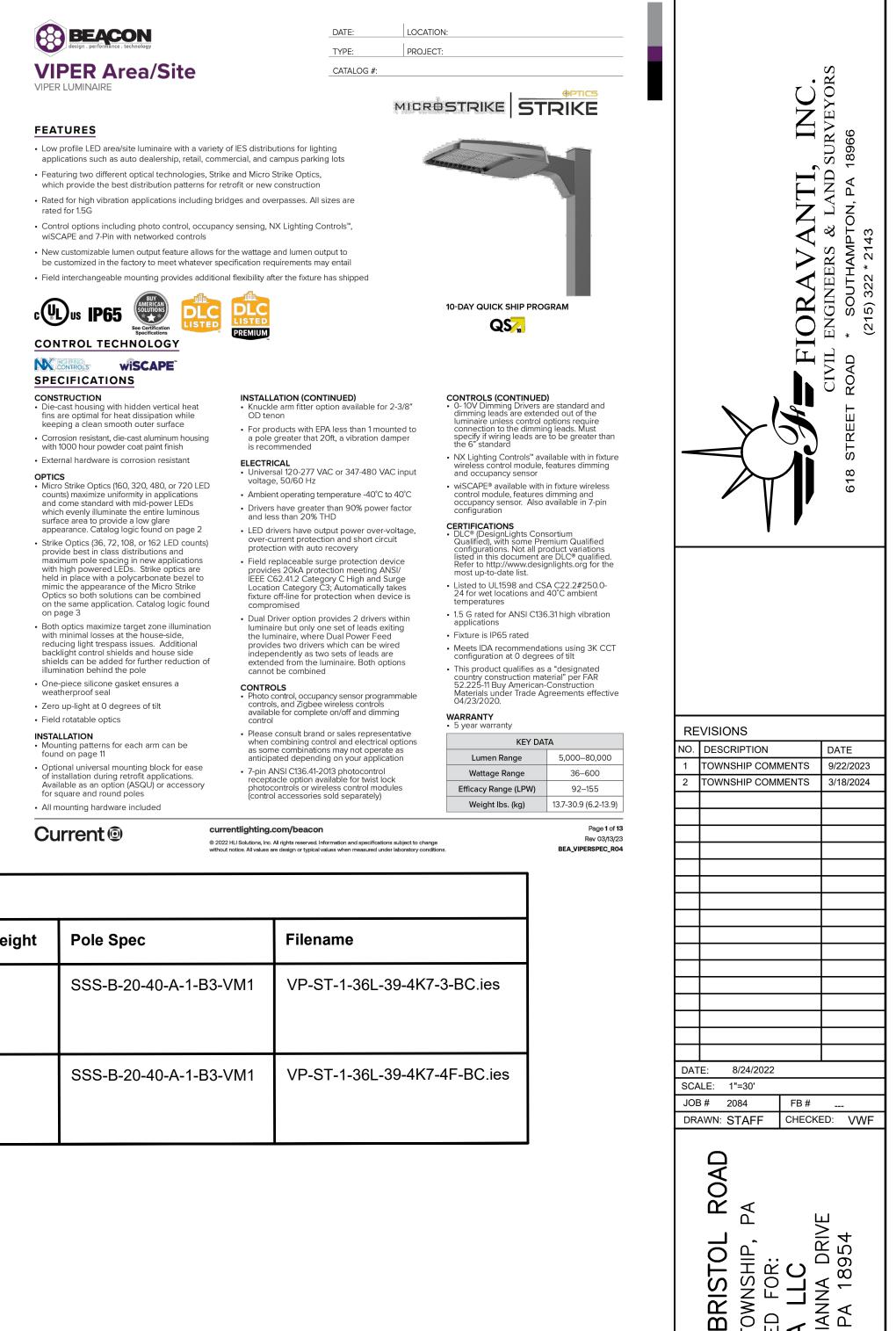
\$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
to t	D.0 D.0 <thd.0< th=""> <thd.0< th=""> <thd.0< th=""></thd.0<></thd.0<></thd.0<>
the	D.0 D.0 <thd.0< th=""> <thd.0< th=""> <thd.0< th=""></thd.0<></thd.0<></thd.0<>
the	D.0 D.0 <thd.0< th=""> <thd.0< th=""> <thd.0< th=""></thd.0<></thd.0<></thd.0<>
10 10 10 10 10 10 10 10 10 10 10 10 10 1	D.0 D.0 <thd.0< th=""> <thd.0< th=""> <thd.0< th=""></thd.0<></thd.0<></thd.0<>
the	D.0 D.0 <thd.0< th=""> <thd.0< th=""> <thd.0< th=""></thd.0<></thd.0<></thd.0<>
to t	b.o
Image: Start of the second	Relation Relation Relation Relation Relation \$.0 \$.0 \$.1 \$.1 \$.1 \$.0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	<u>ho ho ho ho ho ho ho ho ho ho</u> ho ho
= = = = = = = = = = = = = = = = = = =	PARKING 2 0.0 0
MH: 20 MH: 20 NH: 20	6" CURP 07 08 0.6 0.4 0.2 0.0 </th
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0 9.9 9.0 9.1 9.7 05 9.2 8.0 9.0 9.0 9.0 9.0 0.0 9.0 9.0
	9.0 9.2 9.5 9.6 9.7 9.7 9.2 9.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DRIVE C 1.4 1.8 2.0 1.5 1.2 0.9 0.2 0.0
	<u>b.0</u> <u>b.0</u> <u>b.0</u> <u>b.0</u> <u>b.2</u> <u>b.3</u> <u>b.2</u> <u>b.3</u> <u>b.5</u> <u>b.5</u> <u>b.3</u> <u>b.3</u> <u>b.1</u> <u>b.0</u>
14,550 SF GFA	2 STORIES ⁵⁰ 2000 SF ⁶ GFA ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰
MH: 20 MH: 20 0.0 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	\mathfrak{H}_{00} \mathfrak{H}
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	
\$ \$	\mathfrak{h}_{0}
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	\$.0 \$.0 \$.0 \$.0 \$.0 \$.0 \$.0 \$.0 \$.0 \$.0
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
La L	D.0

LUMINAIRE	LUMINAIRE SCHEDULE **REFER TO LIGHTING FIXTURE CUTSHEETS FOR COMPLETE CATALOG NUMBERS**										
Symbol	Qty	Fixture Type	Description	Manufacturer	Catalog Number	ССТ	LLF	Total Watts	Delivered Lumens	Mounting Hei	
	3	P3	AREA LIGHT, TYPE 3 DISTRIBUTION WITH INTERNAL BACKLIGHT	BEACON	VP-ST-1-36L-39-4K7-3-UNV-A-BC	4000K	0.900	40	4481	20	
			CONTROL, MOUNTED 20FT ABOVE GRADE								
	3	P4	AREA LIGHT, TYPE 4 FORWARD THROW DISTRIBUTION WITH INTERNAL	BEACON	VP-ST-1-36L-39-4K7-4F-UNV-A-BC	4000K	0.900	40	4828	20	
			BACKLIGHT CONTROL, MOUNTED 20FT ABOVE GRADE								

CALCULATION SUMMARY										
Label	CalcType	Units	Avg	Мах	Min	Avg/Min	Max/Min	PtSpcLr	PtSpcTb	
CALC PTS TO ZERO_Ground	Illuminance	Fc	0.1	2.1	0.0	N.A.	N.A.	10	10	
StatArea_PARKING 1	Illuminance	Fc	1.5	2.1	0.5	3.0	4.2			
StatArea_PARKING 2	Illuminance	Fc	1.3	2.0	0.7	1.8	2.9			

GENERAL NOTES: 1. MH: IS THE LIGHTING FIXTURE MOUNTING HEIGHT 2. REFLECTANCES OF 80/50/20 ARE USED UNLESS OTHERWISE NOTED (FOR INTERIOR CALCULATIONS) 3. CALCULATION POINTS ON THE WORKPLANE ARE AT 2.5' (INTERIOR) OR GROUND AT 0.0' (EXTERIOR) UNLESS OTHERWISE NOTED NOT FOR CONSTRUCTION

4304 & 411 BRISTOL ROAD
BENSALEM, PA
#213823


DESIGNER	
H. Kilroy	
DATE	
9/18/2023	
SCALE	
AS NOTED	

Calculations have been performed according to IESNA & CE standards and good practice.

Some differences between measured values and calculated results may occur due to changes in the provided information and tolerances in calculation methods, testing procedures, component performance, measurement techniques and field conditions such as voltage and temperature variations.

Input data used to generate the calculation such as room dimensions, reflectance, furniture and architectural elements significantly affect the lighting calculation. If real environment conditions do not match the input data, differences will occur between measured values and calculated values.

FOR REFERENCE ONLY

Page 1 of 1

న

30 4

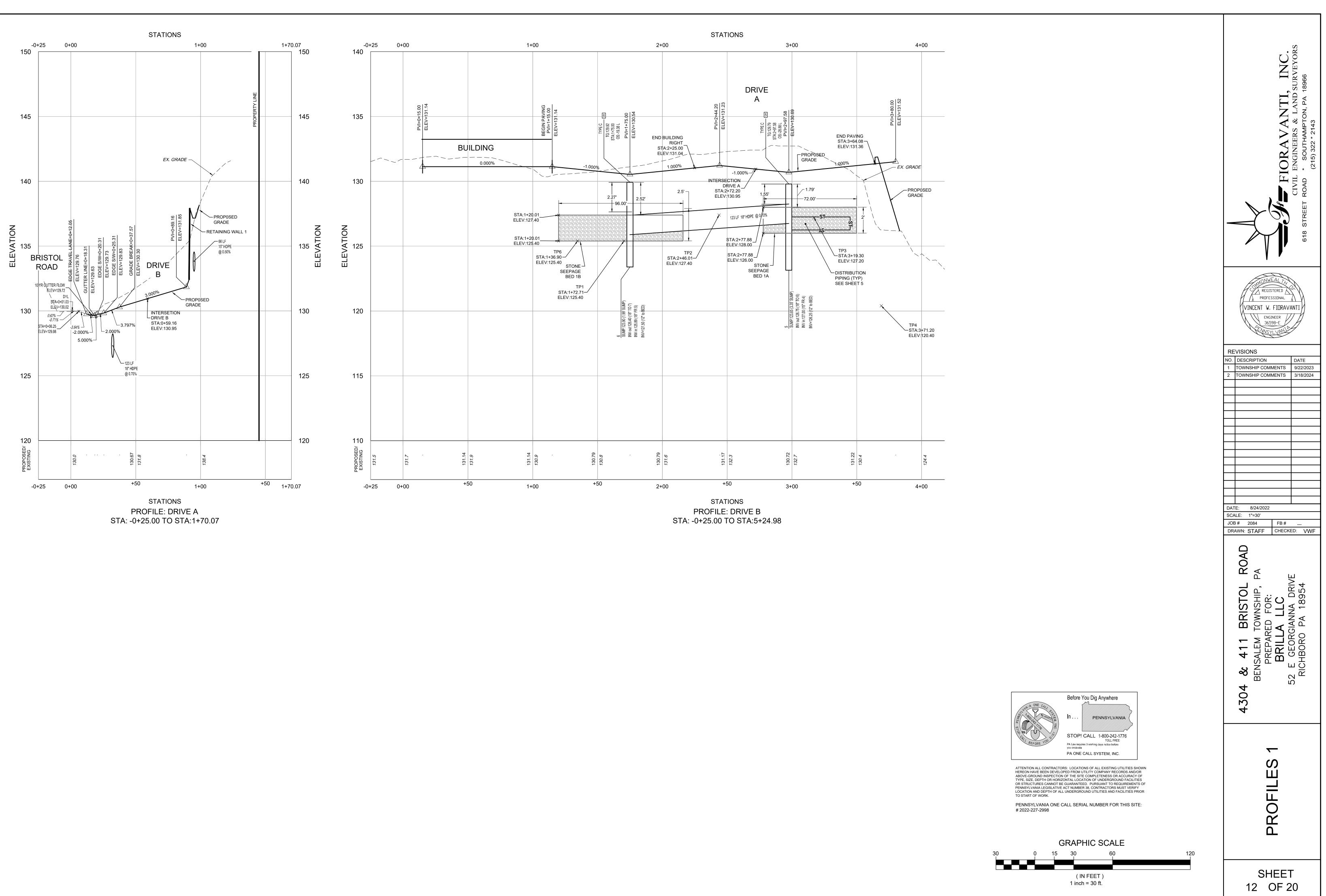
N

ATION

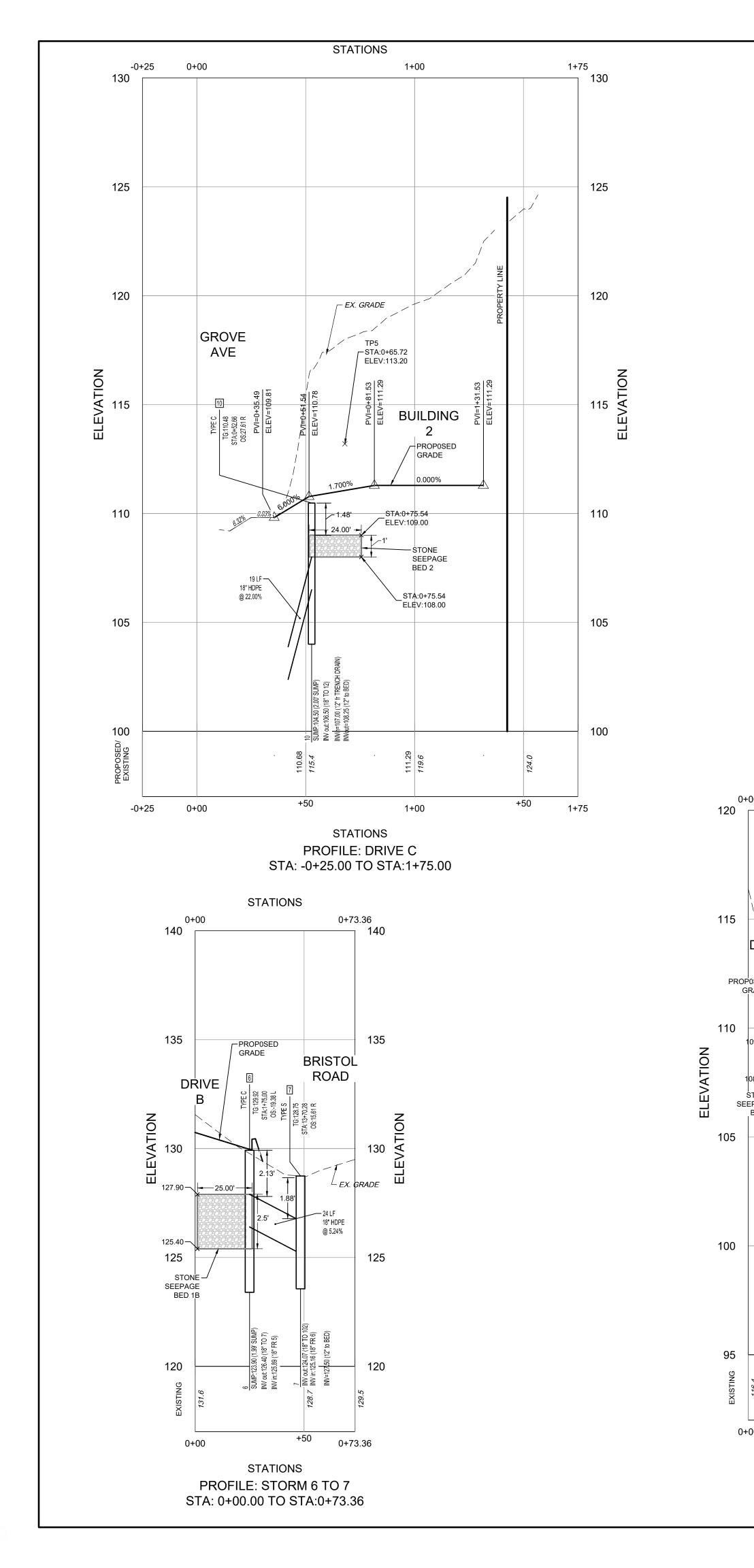
CUL

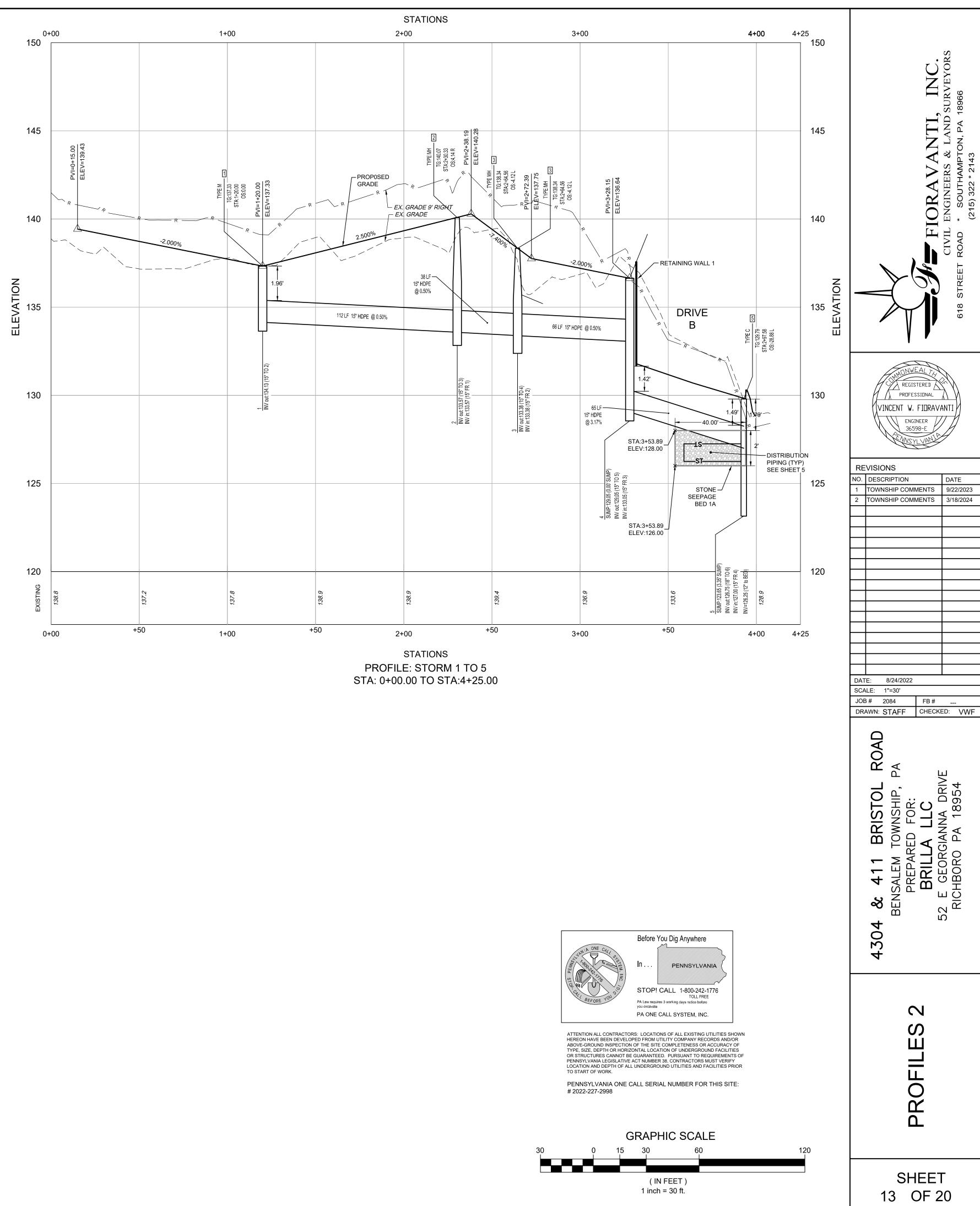
 \bigcirc

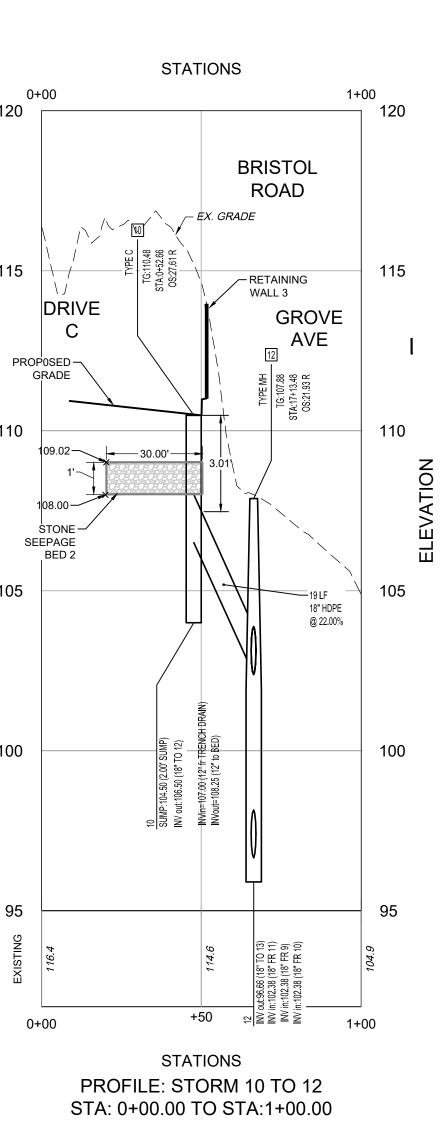
IGHTING

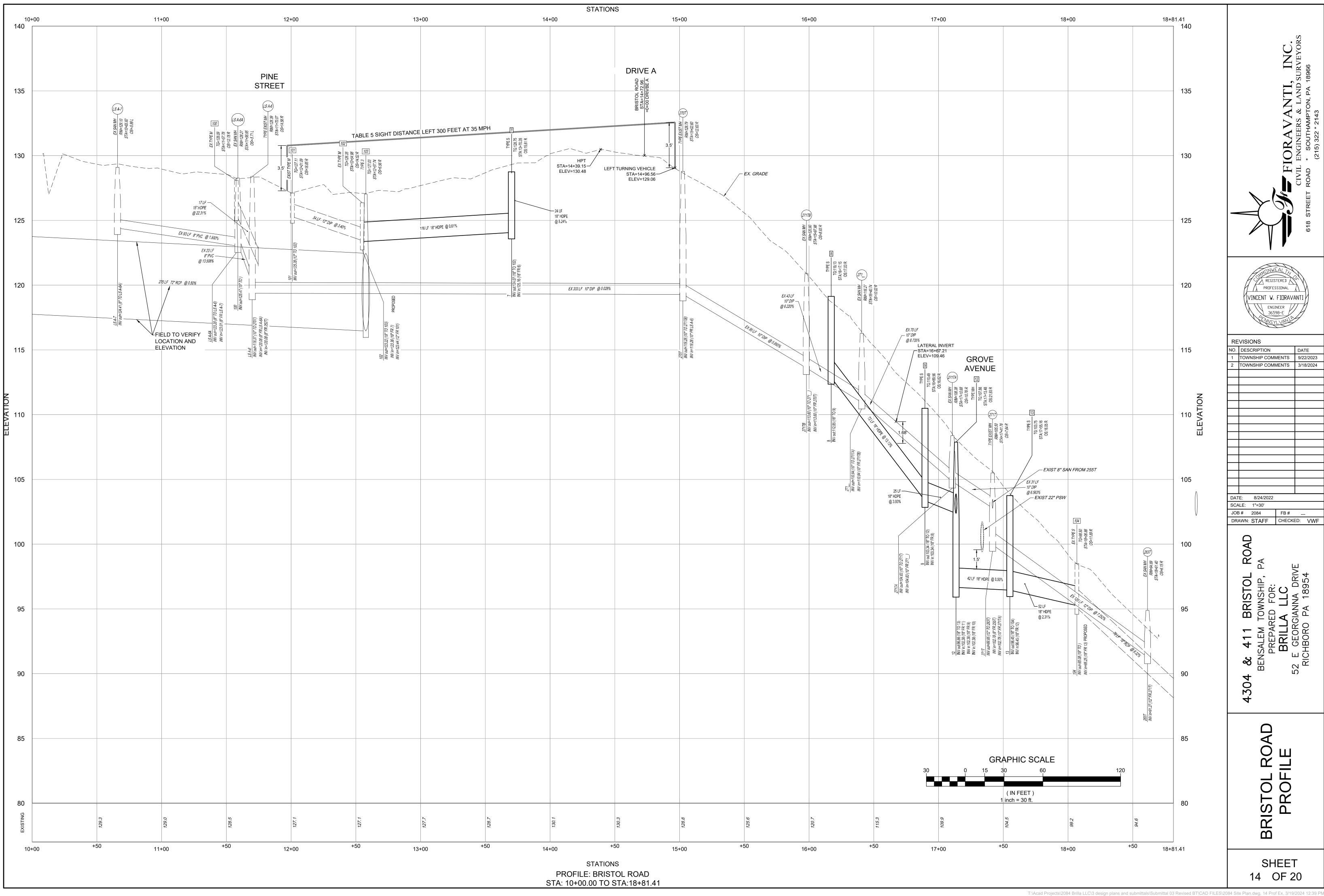

SHEET

11 OF 20


SITE


Diversified Lighting | Technology | Expertise


T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 11 Light, 3/19/2024 12:39 PM


T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 12 Prof 1, 3/19/2024 12:39 PM

T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 13 Prof 2, 3/19/2024 12:39 PM

NC.

OR

618

DATE

JRIVE 54

E G ICHB

52 t RI(

Ξ

Priority Note:

Prior t to the start of construction activities the Owner/Responsible Person (O/RP) for management of the construction site work shall be familiar with:

Pennsylvania Department of Environmental Protection Erosion and Sedimentation Pollution Control Manual, Technical Guidance Number: 3663-2134-008 Dated: March 2012, latest edition

PAGE AND TABLE NUMBERS REFER TO THIS MANUAL.

- Standard E&S Plan Notes from the Pennsylvania Erosion and Sediment Pollution Control Manual. Appendix C
- ALL EARTH DISTURBANCES, INCLUDING CLEARING AND GRUBBING AS WELL AS CUTS AND FILLS SHALL BE DONE IN ACCORDANCE WITH THE APPROVED E&S PLAN. A COPY OF THE APPROVED DRAWINGS (STAMPED, SIGNED AND DATED BY THE REVIEWING AGENCY) MUST BE AVAILABLE AT THE PROJECT SITE AT ALL TIMES. THE REVIEWING AGENCY SHALL BE NOTIFIED OF ANY CHANGES TO THE APPROVED PLAN PRIOR TO IMPLEMENTATION OF THOSE CHANGES. THE REVIEWING AGENCY MAY REQUIRE A WRITTEN SUBMITTAL OF THOSE CHANGES FOR REVIEW AND APPROVAL AT ITS DISCRETION.
- SEE BCCD NOTE 1.
- AT LEAST THREE DAYS BEFORE STARTING ANY EARTH DISTURBANCE ACTIVITY OR EXPANDING INTO AN AREA PREVIOUSLY UNMARKED. THE PENNSYLVANIA ONE CALL SYSTEM INC. SHALL BE NOTIFIED AT 1-800-2542-1776 FOR LOCATION OF EXISTING UNDERGROUND UTILITIES.
- ALL EARTH DISTURBANCE ACTIVITIES SHALL PROCEED IN ACCORDANCE WITH THE SEQUENCE PROVIDED ON THE PLAN DRAWINGS. DEVIATION FROM THAT SEQUENCE MUST BE APPROVED IN WRITING FROM THE LOCAL CONSERVATION DISTRICT OR BY THE DEPARTMENT PRIOR TO IMPLEMENTATION.
- AREAS TO BE FILLED ARE TO BE CLEARED, GRUBBED, AND STRIPPED OF TOPSOIL TO MARKED AND FENCED OFF BEFORE CLEARING AND GRUBBING OPERATIONS BEGIN. REMOVE TREES, VEGETATION, ROOTS AND OTHER OBJECTIONABLE MATERIAL.
- CLEARING, GRUBBING, AND TOPSOIL STRIPPING SHALL BE LIMITED TO THOSE AREAS DESCRIBED IN EACH STAGE OF THE CONSTRUCTION SEQUENCE. GENERAL SITE CLEARING, GRUBBING, AND TOPSOIL STRIPPING MAY NOT COMMENCE IN ANY STAGE OR PHASE OF THE PROJECT UNTIL THE E&S BMPS SPECIFIED BY THE SEQUENCE FOR NOT EXCEED 35 FEET. STOCKPILE SLOPES SHALL BE 2H: 1V OR FLATTER. THAT STAGE OR PHASE HAVE BEEN INSTALLED AND ARE FUNCTIONING AS DESCRIBED IN THIS E&S PLAN.
- AT NO TIME SHALL CONSTRUCTION VEHICLES BE ALLOWED TO ENTER AREAS OUTSIDE THE LIMIT OF DISTURBANCE BOUNDARIES SHOWN ON THE PLAN MAPS. THESE AREAS SEDIMENT POLLUTION AND NOTIFY THE LOCAL CONSERVATION DISTRICT AND/OR TH MUST BE CLEARLY MARKED AND FENCES OFF BEFORE CLEARING AND GRUBBING.
- TOPSOIL REQUIRE FOR THE ESTABLISHMENT OF VEGETATION SHALL BE STOCKPILED AT 10. ALL BUILDING MATERIALS AND WASTES SHALL BE REMOVED FROM THE SITE AND COMPLETE THE FINISH GRADING OF ALL EXPOSED AREAS THAT ARE TO BE STABILIZED DISPOSED OF IN ACCORDANCE WITH THE DEPARTMENT'S SOLID WASTE MANAGEMENT BY VEGETATION. STOCKPILE HEIGHTS MUST NOT EXCEED 35 FEET. STOCKPILE SLOPES OR UNUSED BUILDING MATERIALS SHALL BE BURNED, BURIED, DUMPED, OR DISCHAF
- SEE BCCD NOTE 7. THE LOCAL CONSERVATION DISTRICT AND/OR THE REGIONAL OFFICE OF THE DEPARTMENT SHALL BE NOTIFIED.

10 SEE BCCD NOTE 14.

- THE LOCAL CONSERVATION DISTRICT OR THE DEPARTMENT FULLY IMPLEMENTED PRIOR AFFECTED BY A SPILL OR RELEASE OF A REGULATED SUBSTANCE BUT QUALIFYING TO BEING ACTIVATED.
- THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT ANY MATERIAL BROUGHT ON 13. ALL PUMPING OF WATER FROM ANY WORK AREA SHALL BE DONE ACCORDING THE SITE IS CLEAN FILL. FORM FP-001 MUST BE RETAINED BY THE PROPERTY OWNER FOR ANY FILL MATERIAL AFFECTED BY A SPILL OR RELEASE OF A REGULATED SUBSTANCE BUT QUALIFYING AS CLEAN FILL DUE TO ANALYTICAL TESTING.
- 13 ALL PUMPING OF WATER FROM ANY WORK AREA SHALL BE DONE ACCORDING TO THE PROCEDURE DESCRIBED IN THIS PLAN, OVER UNDISTURBED VEGETATED AREAS.
- 14 VEHICLES AND EQUIPMENT MAY NEITHER ENTER DIRECTLY NOR EXIT DIRECTLY FROM LOTS (SPECIFY LOT NUMBERS) ONTO (SPECIFY ROAD NAMES).
- 15 SEE BCCD NOTE 6.
- 16 A LOG SHOWING THE DATES THAT THE E&S BMPS WERE INSPECTED AS WELL AS ANY DEFICIENCIES FOUND AND THE DATE THEY WERE CORRECTED SHALL BE MAINTAINED ON THE SITE AND MADE AVAILABLE TO THE REGULATORY AGENCY OFFICIALS AT THE TIME OF INSPECTION.
- SEDIMENT TRACKED ONTO ANY PUBLIC ROADWAY OR SIDEWALK SHALL BE RETURNED TO THE CONSTRUCTION SITE BY THE END OF EACH WORKDAY AND DISPOSED IN THE MANNER DESCRIBED IN THIS PLAN. IN NO CASE SHALL THE SEDIMENT BE WASHED, SHOVELED, OR SWEPT INTO ANY ROADSIDE DITCH, STORM SEWER, OR SURFACE WATER.
- 18 ALL SEDIMENT REMOVED FROM BMPS SHALL BE DISPOSED OF IN THE MANNER DESCRIBED ON THE PLAN DRAWINGS. SEE ALSO MCCD NOTE 12.
- AREAS WHICH ARE TO BE TOPSOILED SHALL BE SCARIFIED TO A MINIMUM DEPTH OF 3 TO 5 INCHES -- 6 TO 12 INCHES ON COMPACTED SOILS -- PRIOR TO PLACEMENT OF THE TOP SOIL. AREAS TO BE VEGETATED SHALL HAVE A MINIMUM 4 INCHES OF TOPSOIL IN PLACE PRIOR TO SEEDING AND MULCHING. FILL OUTSLOPES SHALL HAVE A MINIMUM OF 2 INCHES OF TOPSOIL.
- 20 ALL FILLS SHALL BE COMPACTED AS REQUIRED TO REDUCE EROSION, SLIPPAGE, SETTLEMENT, SUBSIDENCE OR OTHER RELATED PROBLEMS. FILL INTENDED TO SUPPORT BUILDINGS, STRUCTURES AND CONDUITS, ETC. SHALL BE COMPACTED IN ACCORDANCE WITH LOCAL REQUIREMENTS OR CODES.
- ALL EARTHEN FILLS SHALL BE PLACED IN COMPACTED LAYERS NOT TO EXCEED 9 INCHES IN THICKNESS.
- 22 FILL MATERIALS SHALL BE FREE OF FROZEN PARTICLES, BRUSH, ROOTS, SOD, OR OTHER FOREIGN OR OBJECTIONABLE MATERIALS THAT WOULD INTERFERE WITH OR PREVENT CONSTRUCTION OF SATISFACTORY FILLS.
- 23 FROZEN MATERIALS OR SOFT, MUCKY, OR HIGHLY COMPRESSIBLE MATERIALS SHALL 24. FILL SHALL NOT BE PLACED ON SATURATED OR FROZEN SURFACES. NOT BE INCORPORATED INTO FILLS.
- 24 FILL SHALL NOT BE PLACED ON SATURATED OR FROZEN SURFACES. 25 SEEPS OR SPRINGS ENCOUNTERED DURING CONSTRUCTION SHALL BE HANDLED IN
- ACCORDANCE WITH THE STANDARD AND SPECIFICATION FOR SUBSURFACE DRAIN OR OTHER APPROVED METHOD.
- 26 ALL GRADED AREAS SHALL BE PERMANENTLY STABILIZED IMMEDIATELY UPON REACHING FINISHED GRADE. CUT SLOPES IN COMPETENT BEDROCK AND ROCK FILLS NEED NOT BE VEGETATED. SEEDED AREAS WITHIN 50 FEET OF A SURFACE WATER, OR AS OTHERWISE SHOWN ON THE PLAN DRAWINGS, SHALL BE BLANKETED ACCORDING TO THE STANDARDS OF THIS PLAN.
- 27 SEE BCCD NOTE 15.
- 28 PERMANENT STABILIZATION IS DEFINED AS A MINIMUM UNIFORM, PERENNIAL 70% VEGETATIVE COVER OR OTHER PERMANENT NON-VEGETATIVE COVER WITH A DENSITY SUFFICIENT TO RESIST ACCELERATED EROSION. CUT AND FILL SLOPES SHALL BE CAPABLE OF RESISTING FAILURE DUE TO SLUMPING, SLIDING, OR OTHER MOVEMENTS.
- 29 E&S BMPS SHALL REMAIN FUNCTIONAL AS SUCH UNTIL ALL AREAS TRIBUTARY TO THEM ARE PERMANENTLY STABILIZED OR UNTIL THE ARE REPLACED BY ANOTHER BMP 29. E&S BMPS SHALL REMAIN FUNCTIONAL AS SUCH UNTIL ALL AREAS TRIBUTARY APPROVED BY THE LOCAL CONSERVATION DISTRICT OR THE DEPARTMENT.
- 30 UPON COMPLETION OF ALL EARTH DISTURBANCE ACTIVITIES AND PERMANENT STABILIZATION OF ALL DISTURBED AREAS, THE O/RP SHALL CONTACT THE LOCAL CONSERVATION DISTRICT FOR AN INSPECTION PRIOR TO THE REMOVAL/CONVERSION OF THE E&S BMPS.
- AFTER FINAL SITE STABILIZATION HAS BEEN ACHIEVED, TEMPORARY EROSION AND SEDIMENT BMPS MUST BE REMOVED OR CONVERTED TO PERMANENT POST CONSTRUCTION STORMWATER MANAGEMENT BMPS. AREAS DISTURBED DURING REMOVAL OR CONVERSION OF THE BMPS SHALL BE STABILIZED IMMEDIATELY. IN ORDER TO ENSURE RAPID REVEGETATION OF DISTURBED AREAS, SUCH REMOVAL/CONVERSIONS ARE TO BE DONE ONLY THE GERMINATING SEASON.
- 32 UPON COMPLETION OF ALL EARTH DISTURBANCE ACTIVITIES AND PERMANENT STABILIZATION OF ALL DISTURBED AREAS. THE O/RP SHALL CONTACT THE LOCAL CONSERVATION DISTRICT TO SCHEDULE A FINAL INSPECTION.
- 33 FAILURE TO CORRECTLY INSTALL E&S BMPS, FAILURE TO PREVENT SEDIMENT-LADEN RUNOFF FROM LEAVING THE CONSTRUCTION SITE, OR FAILURE TO TAKE IMMEDIATE CORRECTIVE ACTION TO RESOLVE FAILURE OF E&S BMPS MAY RESULT IN ADMINISTRATIVE, CIVIL, AND/OR CRIMINAL PENALTIES BEING INSTITUTED BY THE DEPARTMENT AS DEFINED IN SECTION 602 OF THE PENNSYLVANIA CLEAN STREAMS LAW. THE CLEAN STREAMS LAW PROVIDES FOR UP TO \$10,000 PER DAY IN CIVIL PENALTIES, UP TO \$10,000 IN SUMMARY CRIMINAL PENALTIES, AND UP TOP \$25,000 IN MISDEMEANOR CRIMINAL PENALTIES FOR EACH VIOLATION.

I BCCD GENERAL NOTES

ALL EARTH DISTURBANCES, INCLUDING CLEARING AND GRUBBING AS WELL AS SHALL BE DONE IN ACCORDANCE WITH THE APPROVED E&S PLAN. A COPY OF THE DRAWINGS (STAMPED, SIGNED AND DATED BY THE REVIEWING AGENCY) MUST BE A PROJECT SITE AT ALL TIMES. THE REVIEWING AGENCY SHALL BE NOTIFIED OF ANY APPROVED PLAN PRIOR TO IMPLEMENTATION OF THOSE CHANGES. THE REVIEWING REQUIRE A WRITTEN SUBMITTAL OF THOSE CHANGES FOR REVIEW AND APPROVAL DISCRETION.

2. AT LEAST 7 DAYS PRIOR TO STARTING ANY EARTH DISTURBANCE ACTIVITIES, CLEARING AND GRUBBING, THE OWNER AND/OR OPERATOR SHALL INVITE ALL CON LANDOWNER, APPROPRIATE MUNICIPAL OFFICIALS, THE E&S PLAN PREPARER, THE PREPARER, THE LICENSED PROFESSIONAL RESPONSIBLE FOR OVERSIGHT OF CRITICAL IMPLEMENTATION OF THE PCSM PLAN, AND A REPRESENTATIVE FROM THE LOCAL (DISTRICT TO AN ON-SITE PRECONSTRUCTION MEETING.

3. AT LEAST 3 DAYS PRIOR TO STARTING ANY EARTH DISTURBANCE ACTIVITIES, INTO AN AREA PREVIOUSLY UNMARKED, THE PENNSYLVANIA ONE CALL SYSTEM IN NOTIFIED AT 1-800-242-1776 FOR THE LOCATION OF EXISTING UNDERGROUND UT

4. ALL EARTH DISTURBANCE ACTIVITIES SHALL PROCEED IN ACCORDANCE WITH TH PROVIDED ON THE PLAN DRAWINGS. DEVIATION FROM THAT SEQUENCE MUST BE AP WRITING FROM THE LOCAL CONSERVATION DISTRICT OR BY THE DEPARTMENT PRIOR IMPLEMENTATION.

AREAS TO BE FILLED ARE TO BE CLEARED, GRUBBED, AND STRIPPED OF TOPS TREES, VEGETATION, ROOTS AND OTHER OBJECTIONABLE MATERIAL.

CLEARING, GRUBBING, AND TOPSOIL STRIPPING SHALL BE LIMITED TO THOSE IN EACH STAGE OF THE CONSTRUCTION SEQUENCE. GENERAL SITE CLEARING, GRUB TOPSOIL STRIPPING MAY NOT COMMENCE IN ANY STAGE OR PHASE OF THE PROJE E&S BMPS SPECIFIED BY THE BMP SEQUENCE FOR THAT STAGE OR PHASE HAVE E AND ARE FUNCTIONING AS DESCRIBED IN THIS E&S PLAN.

AT NO TIME SHALL CONSTRUCTION VEHICLES BE ALLOWED TO ENTER AREAS (OF DISTURBANCE BOUNDARIES SHOWN ON THE PLAN MAPS. THESE AREAS MUST BI

8. TOPSOIL REQUIRED FOR THE ESTABLISHMENT OF VEGETATION SHALL BE STOCK LOCATION(S) SHOWN ON THE PLAN MAPS(S) IN THE AMOUNT NECESSARY TO COMP GRADING OF ALL EXPOSED AREAS THAT ARE TO BE STABILIZED BY VEGETATION. I SHALL BE PROTECTED IN THE MANNER SHOWN ON THE PLAN DRAWINGS. STOCKPIL

9. IMMEDIATELY UPON DISCOVERING UNFORESEEN CIRCUMSTANCES POSING THE P ACCELERATED EROSION AND/OR SEDIMENT POLLUTION, THE OPERATOR SHALL IMPL APPROPRIATE BEST MANAGEMENT PRACTICES TO MINIMIZE THE POTENTIAL FOR ERO OFFICE OF THE DEPARTMENT.

SITE

11. ALL OFF-SITE WASTE AND BORROW AREAS MUST HAVE AN E&S PLAN APPROV LOCAL CONSERVATION DISTRICT OR THE DEPARTMENT FULLY IMPLEMENTED PRIOR ACTIVATED

12. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT ANY MATERIAL BROUGH ALL OFF-SITE WASTE AND BORROW AREAS MUST HAVE AN E&S PLAN APPROVED BY CLEAN FILL. FORM FP-001 MUST BE RETAINED BY THE PROPERTY OWNER FOR ANY DUE TO ANALYTICAL TESTING

PROCEDURE DESCRIBED IN THIS PLAN, OVER UNDISTURBED VEGETATED AREAS.

14. VEHICLES AND EQUIPMENT MAY NEITHER ENTER DIRECTLY NOR EXIT DIRECTLY F ONTO STONEYFORD ROAD OR EAST VILLAGE ROAD EXCEPT FOR INDIVIDUAL LOT CON

15. UNTIL THE SITE IS STABILIZED, ALL EROSION AND SEDIMENT BMPS SHALL BE M PROPERLY. MAINTENANCE SHALL INCLUDE INSPECTIONS OF ALL EROSION AND SEDIM EACH RUNOFF EVENT AND ON A WEEKLY BASIS. ALL PREVENTATIVE AND REMEDIAL WORK, INCLUDING CLEAN OUT, REPAIR, REPLACEMENT, REGRADING, RESEEDING, REM RENETTING MUST BE PERFORMED IMMEDIATELY. IF THE E&S BMPS FAIL TO PERFOR REPLACEMENT BMPS, OR MODIFICATIONS OF THOSE INSTALLED WILL BE REQUIRED.

16. A LOG SHOWING DATES THAT E&S BMPS WERE INSPECTED AS WELL AS ANY D FOUND AND THE DATE THEY WERE CORRECTED SHALL BE MAINTAINED ON THE SIT AVAILABLE TO REGULATORY AGENCY OFFICIALS AT THE TIME OF INSPECTION.

17. SEDIMENT TRACKED ONTO ANY PUBLIC ROADWAY OR SIDEWALK SHALL BE RETU CONSTRUCTION SITE BY THE END OF EACH WORK DAY AND DISPOSED IN THE MANI THIS PLAN. IN NO CASE SHALL THE SEDIMENT BE WASHED, SHOVELED, OR SWEPT ROADSIDE DITCH, STORM SEWER, OR SURFACE WATER.

18. ALL SEDIMENT REMOVED FROM BMPS SHALL BE DISPOSED OF IN THE MANNER THE PLAN DRAWINGS.

19. AREAS WHICH ARE TO BE TOPSOILED SHALL BE SCARIFIED TO A MINIMUM DEP INCHES -6 TO 12 INCHES ON COMPACTED SOILS -PRIOR TO PLACEMENT OF TOPSO VEGETATED SHALL HAVE A MINIMUM 4 INCHES OF TOPSOIL IN PLACE PRIOR TO SE MULCHING. FILL OUTSLOPES SHALL HAVE A MINIMUM OF 2 INCHES OF TOPSOIL.

20. ALL FILLS SHALL BE COMPACTED AS REQUIRED TO REDUCE EROSION, SLIPPAGE SUBSIDENCE OR OTHER RELATED PROBLEMS. FILL INTENDED TO SUPPORT BUILDINGS AND CONDUITS, ETC. SHALL BE COMPACTED IN ACCORDANCE WITH LOCAL REQUIRE

21. ALL EARTHEN FILLS SHALL BE PLACED IN COMPACTED LAYERS NOT TO EXCEED THICKNESS.

22. FILL MATERIALS SHALL BE FREE OF FROZEN PARTICLES, BRUSH, ROOTS, SOD, FOREIGN OR OBJECTIONABLE MATERIALS THAT WOULD INTERFERE WITH OR PREVEN OF SATISFACTORY FILLS.

23. FROZEN MATERIALS OR SOFT, MUCKY, OR HIGHLY COMPRESSIBLE MATERIALS SH INCORPORATED INTO FILLS.

25. SEEPS OR SPRINGS ENCOUNTERED DURING CONSTRUCTION SHALL BE HANDLED WITH THE STANDARD AND SPECIFICATION FOR SUBSURFACE DRAIN OR OTHER APPR

26. ALL GRADED AREAS SHALL BE PERMANENTLY STABILIZED IMMEDIATELY UPON R FINISHED GRADE. CUT SLOPES IN COMPETENT BEDROCK AND ROCK FILLS NEED VEGETATED. SEEDED AREAS WITHIN 50 FEET OF A SURFACE WATER, OR AS OTHER THE PLAN DRAWINGS, SHALL BE BLANKETED ACCORDING TO THE STANDARDS OF T

27. IMMEDIATELY AFTER EARTH DISTURBANCE ACTIVITIES CEASE IN ANY AREA OR PROJECT, THE OPERATOR SHALL STABILIZE ALL DISTURBED AREAS. DURING NON-0 MONTHS, MULCH OR PROTECTIVE BLANKETING SHALL BE APPLIED AS DESCRIBED IN AREAS NOT AT FINISHED GRADE. WHICH WILL BE REACTIVATED WITHIN 1 YEAR. MA IN ACCORDANCE WITH THE TEMPORARY STABILIZATION SPECIFICATIONS. THOSE ARE, NOT BE REACTIVATED WITHIN 1 YEAR SHALL BE STABILIZED IN ACCORDANCE WITH STABILIZATION SPECIFICATIONS.

28. PERMANENT STABILIZATION IS DEFINED AS A MINIMUM UNIFORM, PERENNIAL 705 COVER OR OTHER PERMANENT NON-VEGETATIVE COVER WITH A DENSITY SUFFICIEN ACCELERATED EROSION. CUT AND FILL SLOPES SHALL BE CAPABLE OF RESISTING F SLUMPING. SLIDING. OR OTHER MOVEMENTS.

PERMANENTLY STABILIZED OR UNTIL THEY ARE REPLACED BY ANOTHER BMP APPRO LOCAL CONSERVATION DISTRICT OR THE DEPARTMENT.

30. UPON COMPLETION OF ALL EARTH DISTURBANCE ACTIVITIES AND PERMANENT S ALL DISTURBED AREAS, THE OWNER AND/OR OPERATOR SHALL CONTACT THE LOCA DISTRICT FOR AN INSPECTION PRIOR TO REMOVAL/CONVERSION OF THE E&S BMPS.

31. AFTER FINAL SITE STABILIZATION HAS BEEN ACHIEVED, TEMPORARY EROSION AN BMPS MUST BE REMOVED OR CONVERTED TO PERMANENT POST CONSTRUCTION ST MANAGEMENT BMPS. AREAS DISTURBED DURING REMOVAL OR CONVERSION OF THE STABILIZED IMMEDIATELY. IN ORDER TO ENSURE RAPID REVEGETATION OF DISTURBE REMOVAL/CONVERSIONS ARE TO BE DONE ONLY DURING THE GERMINATING SEASON

32. UPON COMPLETION OF ALL EARTH DISTURBANCE ACTIVITIES AND PERMANENT S ALL DISTURBED AREAS, THE OWNER AND/OR OPERATOR SHALL CONTACT THE LOCA DISTRICT TO SCHEDULE A FINAL INSPECTION.

33. FAILURE TO CORRECTLY INSTALL E&S BMPS, FAILURE TO PREVENT SEDIMENT-FROM LEAVING THE CONSTRUCTION SITE, OR FAILURE TO TAKE IMMEDIATE CORRECT RESOLVE FAILURE OF E&S BMPS MAY RESULT IN ADMINISTRATIVE, CIVIL, AND/OR PENALTIES BEING INSTITUTED BY THE DEPARTMENT AS DEFINED IN SECTION 602 OF PENNSYLVANIA CLEAN STREAMS LAW. THE CLEAN STREAMS LAW PROVIDES FOR UP DAY IN CIVIL PENALTIES. UP TO \$10,000 IN SUMMARY CRIMINAL PENALTIES, AND U MISDEMEANOR CRIMINAL PENALTIES FOR EACH VIOLATION.

EROSION AND SEDIMENTATION CONTROL NOTES

	A.	STABILIZED CONSTRUCTION ENTRANCE 1. WHERE CONSTRUCTION TRAFFIC WILL ENTER PAVED ROADS,		NTENANCE OF EROSION AND SEDIMENTATION CONTROLS NBE FOUND AT THE FOLLOWING LOCATIONS:
CUTS AND FILLS E APPROVED		A STABILIZED CONSTRUCTION ENTRANCE SHALL BE PROVIDED TO PREVENT THE TRACKING OR FLOW OF	SEE THE	E FOLLOWING E&S NOTES: 9, 13, 15-18, 29, AND 33.
VAILABLE AT THE CHANGES TO THE		SEDIMENT ONTO PUBLIC RIGHTS-OF-WAY. SEE "STABILIZED CONSTRUCTION ENTRANCE" DETAIL.	SEE THE	E FOLLOWING MCCD NOTES: 5-8, 12, 15, AND 17-18.
AGENCY MAY AT ITS	В.	SILT FENCE 1. SILT FENCE SHALL BE PROVIDED AS INDICATED ON THE	RECYC	CLING
INCLUDING		DRAWINGS, ALONG THE LOWER PERIPHERY OF THE ACTIVE WORK AREA WHERE SEDIMENT LADEN WATER MAY BE EXPECTED TO FLOW ONTO INACTIVE AREAS. SEE "SILT		NG AND DISPOSAL OF BUILDING MATERIALS AND WASTES
RACTORS, THE PCSM PLAN L STAGES OF		FENCE" DETAIL.		N BE FOUND AT THE FOLLOWING LOCATION: CD NOTE NUMBER 14.
CONSERVATION		2. SYNTHETIC SILT FENCE FILTER FABRIC SHALL BE A PERVIOUS SHEET OF PROPYLENE, NYLON, POLYESTER, OR		
OR EXPANDING . SHALL BE		ETHYLENE YARN PRODUCED BY A REPUTABLE MANUFACTURER FOR THE SPECIFIC PURPOSE OF BEING USED AS A SILT FENCING MEDIA.		and Notes Involving Earthwork: will need to import or export material from the site, the responsibility for performing
LITIES.	C. S	STOCKPILE		nental due diligence and determination of clean fill will rest with the applicant and
HE SEQUENCE PPROVED IN TO		1. ALL STRIPPED TOPSOIL AND EXCAVATED EARTHEN		
		MATERIAL TO BE USED WITHIN THE PROJECT SITE SHALL BE ROPERLY STOCKPILED. MATERIAL FOUND TO BE UNSUITABLE FOR SUBSEQUENT USE OR IN EXCESS OF THE	ine	ean Fill is defined as: Uncontaminated, non-water soluble, non-decomposable rt, solid material. The term includes soil, rock, stone, dredged material, used asphal
SOIL TO REMOVE		QUALITY REQUIRED SHALL BE DISPOSED OFFSITE. THE LOCATION, METHOD OF DISPOSAL, AND MEANS OF		I brick, block or concrete from construction and demolition activities that is separat n other waste and is recognizable as such. The term does not include material
AREAS DESCRIBED BING AND		TRANSPORT SHALL BE IN ACCORDANCE WITH STATE AND LOCAL LAWS.	•	ced in or on the waters of the Commonwealth unless otherwise authorized. (Th n "used asphalt" does not include milled asphalt or asphalt that has been processe
CT UNTIL THE BEEN INSTALLED		2. IMMEDIATELY AFTER STOCKPILING OPERATIONS HAVE BEEN COMPLETED, THE STOCK PILE SHALL BE TEMPORARILY		re-use).
OUTSIDE THE LIMIT		STABILIZED AS DESCRIBED IN THE "TEMPORARY STABILIZATION" SECTION OF THESE SPECIFICATIONS.	Cle	ean Fill affected by a spill or release of a regulated substance:
E CLEARLY		3. SILT FENCE SHALL BE PROVIDED AT THE BASE OF ALL OF THE STOCKPILES FOR ADDITIONAL PROTECTION. SEE	Fill	materials affected by a spill or release of a regulated substance still qualifies as clea
KPILED AT THE PLETE THE FINISH		"STOCKPILE CONTROL" DETAIL.	sub	provided the testing reveals that the fill material contains concentrations of regulate estances that are below the residential limits in Tables FP-1a and FP-1b found in th
ACH STOCKPILE E HEIGHTS SHALL				partment's policy <i>"Management of Fill"</i> . y person placing clean fill that has been affected by a spill or release of a regulate
OTENTIAL FOR	A.	SOIL AMENDMENT APPLICATION RATE EQUIVALENTS TABLE 11.2, Pg 266	sub	stance must use form FP-001 to certify the origin of the fill material and the results of analytical testing to qualify the material as clean fill. Form FP-001 must be retaine
EMENT DSION AND		Per Acre Per 1000 s.f. Notes AGRICULTURAL LIME 1 ton 40 lb Typically not	by	the owner of the property receiving the fill. A copy of Form FP-001 can be found a end of these instructions.
E REGIONAL		required for 10-10-10 FERTILIZER 500 lb 12.5 lb stockpiles		
D RECYCLED OR T REGULATIONS	В.	SEED MIX - TEMPORARY EROSION CONTROL COVER ERNST SEED MIX:ERNMX-104 or equivalent	dilię	vironmental due diligence : The applicant must perform environmental du gence to determine if the fill materials associated with the project qualify as clean fi
LS OR WASTES RGED AT THE		SEED RATE: 50 lb per acre MIX TYPE: DISTURBED SITES AND STEEP SLOPES DESTORED NOT STEEP SLOPES DISTURBED SITES AND STEEP SLOPES	lim	vironmental due diligence is defined as: Investigative techniques, including, but no ited to, visual property inspections, electronic data base searches, review of proper
ED BY THE		SPECIES LIST: 50% Annual Ryegrass Lolium multiflorum L.perenne var. italicum)) 50% Perennial Ryegrass, 'Roadster' (turf type) (Lolium perenne, Roadster)	trar	nership, review of property use history, Sanborn maps, environmental questionnaire nsaction screens, analytical testing, environmental assessments or audits. Analytic
O BEING		OTHER MIXES: OPTIMUM SEEDING DATES ARE FEBRUARY 15 THRU MAY 1 OR AUGUST 15 THRU	rev	ting is not a required part of due diligence unless visual inspection and/o iew of the past land use of the property indicates that the fill may have bee
HT ON SITE IS Y FILL MATERIAL		OCTOBER 15 FOR THE FOLLOWING SPECIES: SPECIES POUNDS OPTIMUM SEED DEPTH PER		bjected to a spill or release of regulated substance. If the fill may have been acted by a spill or release of a regulated substance, it must be tested to determine if
AS CLEAN FILL		RE (DOUBLE FOR SANDY SOIL) ANNUAL RYEGRASS 40 0.5 INCH PERENNIAL RYEGRASS 40 0.5 INCH	•	alifies as clean fill. Testing should be performed in accordance with Appendix A of the partment's policy <i>"Management of Fill"</i> .
TO THE	0,	ATS 86 1.0 INCH BARLEY 96 1.0 INCH		rial that does not qualify as clean fill is regulated fill. Regulated fill is waste and must ged in accordance with the Department's municipal or residual waste regulations
FROM THE SITE		OPTIMUM SEEDING DATES ARE MAY 1 THRU AUGUST 15 FOR THE FOLLOWING SPECIES:	based or	n 25 Pa. Code Chapters 287 Residual Waste Management or 271 Municipal Waste
IAINTAINED		SPECIES POUNDS OPTIMUM SEED DEPTH PER ACRE (DOUBLE FOR SANDY SOIL) PEARL MILLET 20 1.0 INCH	-	ment, whichever is applicable. These regulations are available on-line at <u>icode.com</u> .
MENT BMPS AFTER . MAINTENANCE IULCHING AND	0.	UNDANGRASS 30 1.0 INCH ILLET (GERMAN OR HUNGARIAN) 30 1.0 INCH	\ FⅡ	L DETERMINATION:
M AS EXPECTED,	W	HUNGARIAN)301.0 INCH/EEPING LOVEGRASS51.0 INCH		1 If due diligence shows no evidence of a release of a regulated substance,
EFICIENCIES E AND BE MADE				the material may be managed as clean fill under this policy.
JRNED TO THE	C.	MULCHING		2 If due diligence shows evidence of a release, the material must be tested to determine if it qualifies as clean fill. testing must be performed in accordance
NER DESCRIBED IN INTO ANY	l	1. SEE PAGES 270 - 277 FOR MULCHING AND STABILIZATION METHODS. TABLE 11.6, Pg 271 - MULCH APPLICATION RATES		with appendix a.
DESCRIBED ON		TABLE 11.7, Pg 276 - Typical Polymer Stabilized Fiber Matrix Application Rates		 a) If testing reveals that the material contains concentrations of regulated substances that are below the residential limits in table fp-1a and b, the material may be managed as clean fill.
		2. MULCHING SHALL BE PROVIDED AS REQUIRED IN AREAS DIFFICULT TO VEGETATE.		b) If testing reveals that the material contains concentrations of
TH OF 3 TO 5 DIL. AREAS TO BE EDING AND		3. MULCHING METHODS AND MATERIALS SHALL CONFORM TO THE FOLLOWING:		regulated substances that exceed the limits in table fp-1a and b, the material must be managed as regulated fill.
E, SETTLEMENT,		A. MULCH MATERIALS SHALL BE UNSALTED HAY, OR SMALL GRAIN STRAW APPLIED AT A RATE OF 3 TONS PER ACRE. MULCH BLOWERS		3 A person may not blend or mix materials to become clean fill. Materials that
S, STRUCTURES MENTS OR CODES.		SHALL NOT GRIND OR CHOP MATERIAL.		contain regulated substances that are intentionally released may not be managed under this policy.
9 INCHES IN		 B. MULCH SHALL BE SPREAD UNIFORMLY BY HAND OR MECHANICALLY SO THAT APPROXIMATELY 75% TO 95% OF THE SOIL SURFACE WILL BE COVERED 	B MA	ANAGEMENT OF CLEAN FILL:
OR OTHER		C. MULCH ANCHORING SHALL BE ACCOMPLISHED IMMEDIATELY AFTER	1	Use of material as clean fill does not require a permit under the solid waste
CONSTRUCTION		PLACEMENT TO MINIMIZE LOSS BY WIND OR WATER. THIS MAY BE DONE BY ONE OF THE FOLLOWING METHODS, DEPENDING UPON THE SIZE OF SLOPES AND COSTS.		management act and regulations, and it may be used in an unrestricted or unregulated manner under this act and its regulations. the use of materials as
HALL NOT BE		 (1) MULCH NETTINGS: STAPLE PAPER, JUTE, COTTON OR PLASTIC NETTINGS TO THE SOIL SURFACE. 		clean fill is still regulated under other environmental laws and regulations. a person using materials as clean fill under the policy is still subject to and must
		USE A DEGRADABLE NETTING IN AREAS TO BE MOWED.		comply with all applicable requirements governing the placement or use of material as clean fill, such as Chapter 102 (Erosion and Sediment Control) and
IN ACCORDANCE ROVED METHOD.		(2) LIQUID MULCH BINDERS: MAY BE USED TO ANCHOR HAY OR STRAW MULCHES APPLICATIONS SHOULD BE HEAVIER AT EDGES.	S.	Chapter 105 (Dam Safety and Waterway Management).
REACHING NOT BE		(3) WHERE WIND CATCHES THE MULCH, IN VALLEYS AND AT CRESTS OF BANKS. REMAINDER OF AREA SHOULD BE UNIFORM IN APPEARANCE.	2	Best management practices (BMP) must be followed prior to demolition activities to remove materials like lead-based paint surface, friable asbestos and hazardous
WISE SHOWN ON HIS PLAN.		(4) WOOD-FIBER OR PAPER-FIBER MULCH AT THE RATE OF 1,500 POUNDS PER ACRE MAY BE APPLIED BY A HYDROSEEDER. USE IS LIMITED TO FLATTER		materials such as mercury switches, PCB ballasts and fluorescent light bulbs from a building if the brick, block, or concrete is used as clean fill.
SUBAREA OF THE ERMINATING		SLOPES.	3	Clean fill may not contain any free liquids based on visual inspection, and shall
THE PLAN. Y BE STABILIZED AS WHICH WILL				not create public nuisances (for example objectionable odors) to users of the receiving property or adjacent properties.
THE PERMANENT		A. GRADING STANDARDS		
% VEGETATIVE T TO RESIST		A. GRADING STANDARDS1. SEE E&S PLAN NOTES: 5, 19-24, AND 26.		
FAILURE DUE TO		2. SEE CHAPTER 16 - GRADING STANDARDS, Pg 325-326 FOR		
TO THEM ARE OVED BY THE		ADDITIONAL NOTES. B. SOIL AMENDMENT APPLICATION RATE EQUIVALENTS		
		TABLE 11.2, Pg 266 Per Acre Per 1000 s.f. Notes		
STABILIZATION OF		AGRICULTURAL LIME 6 ton 240 lb Or as per soil test; may not be required 10-10-10 FERTILIZER 1000 lb 25 lb in agricultural fields.		
ND SEDIMENT		C. SEEDING STANDARDS		
ORMWATER BMPS SHALL BE D AREAS, SUCH		1. UNLESS SPECIFIED ELSEWHERE ON THE PLAN DRAWINGS,		
		SEE Pg 263-269 FOR SEEDING SPECIFICATIONS. TABLE 11.3 - Plant Tolerances of Soil Limitation Factors		
TABILIZATION OF		TABLE 11.4 - Recommended Seed Mixtures		
_ADEN RUNOFF		TABLE 11.5 - Recommended Seed Mixtures for Stabilizing Disturbed Areas		
TIVE ACTION TO CRIMINAL				
F THE TO \$10,000 PER IP TO \$25,000 IN				
,⊂ ₩∠∪,∪∪∪ IN				

MAINTENANCE

SITE MAINTENANCE OF EROSION AND SEDIMENTATION CONTROLS

	CONSTRUCTION SEQUENCE
STEP	DESCRIPTION
1	AT LEAST 3 DAYS PRIOR TO CONSTRUCTION, CONTACT PA ONE CALL
2	PRE-CONSTRUCTION MEETING WITH TOWNSHIP AND BCCD
	CONSTRUCT STABILIZED CONSTRUCTION ENTRANCES SCE-1 AND SCE-2 AS SHOWN ON THE PLANS
	INSTALL ALL SILT SOXX AS SHOWN ON THE PLANS. INSTALL WORK FENCE AROUND LIMITS OF SEEPAGE BEDS
2	CONSTRUCT AND STABILIZE STORM SEWER 1-7 TO 102
3	CONSTRUCT AND STABILIZE CHANNELS 1, 2, AND 3 TO DIVERT OFF SITE RUNOFFF AROUND THE WORK AREA
4	STRIP AND STOCKPILE TOPSOIL
5	ROUGH GRADE BUILDING PADS AND STABILIZE.
6	CONSTRUCT DWELLING, INSTALL UTILITIES, FINE GRADE SITE, TOPSOIL AND STABILIZE ALL AREAS EXCEPT SEEPAGE BEDS.
7	AFTER ENTIRE LOT IS STABLIZED INSTALL SEEPAGE BEDS. (SEE BELOW FOR SPECIFIC CONSTRUCTION SEQUENCE)
8	THE FOLLOWING CONTROLS CAN BE REMOVED, INSTALLED AND OR MODIFIED AFTER TRIBUTARY AREAS ARE STABILIZED. STABALIZED MEANS AT LEAST 70% PER SQUARE YARD OF PERIENNIAL VEGETATIVE COVER WITH A DENSITY CABABLE OF RESISTING EROSION. (SEE GENERAL NOTE B THIS SHEET) REMOVE SILT SOXX AND STABILIZED ENTRANCE

composable used asphalt t is separate de materials orized. (The en processed

ance: ifies as clean of regulated found in the

f a regulated the results of t be retained n be found at

onmental due / as clean fill. ding, but not w of property uestionnaires, Analytical ction and/or have been have been letermine if it endix A of the

te and must ulations pal Waste

SEEPAGE BED CONSTRUCTION SEQUENCE
DESCRIPTION
PROTECT INFILTRATION BED AREA FROM COMPACTION PRIOR TO INSTALLATION TO THE EXTENT POSSIBLE.
INSTALL AND MAINTAIN PROPER EROSION AND SEDIMENT CONTROL MEASURES DURING CONSTRUCTION.
EXCAVATE INFILTRATION BED BOTTOM TO AN UNCOMPACTED SUBGRADE FREE FROM ROCKS AS SHOWN ON THE PLANS. DO NOT COMPACT SUBGRADE
SCARIFY THE BOTTOM OF THE BED. THIS IS A CRITICAL STEP AND THE BOTTOM OF THE BED SHOULD BE INSPECTED AND APPROVED BY THE ENGINEER PRIOR TO FINAL STABILIZATION. AFTER APPROVAL IS OBTAINED INSTALL LANDSCAPING AND MULCH.
PLANT, SEED AND STABILIZE REMAINING AREA. REINSTALL FENCE REMOVED FOOR CONSTRUCTION

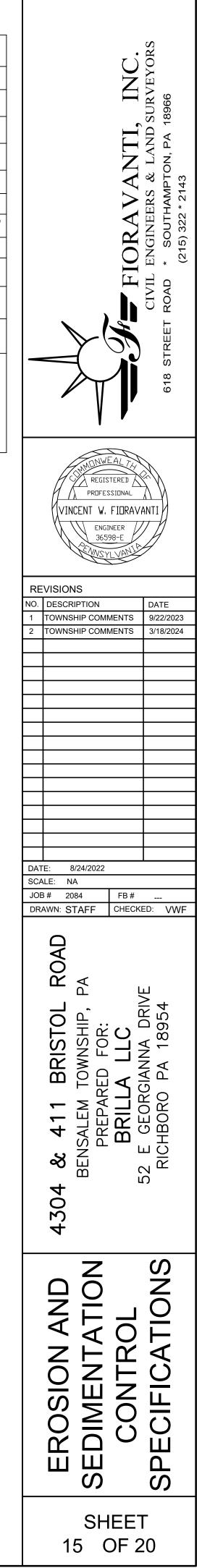
The USDA NRCS Web Soil Survey indicates the following soil limitations for the on site soils. Soil Limitations for Urban Land Duffield 0–8 % , Urban Land Lansdale 8–15 %Urban Land Lawrenceville 0–8 % are summarized below per NRCS and Pa DEP Erosion and sediment pollution control program manual Tech Guidance number 363-2134-008 last revised March 2012 as set forth below with resolutions as appropriate 1. CAVING OF CUT BANKS All excavations and trenching shall be conducted in accordance with standard OSHA safety regulations 2. CORROSIVE TO CONCRETE AND STEEL Concrete foundations shall have under drains where feasible to keep footings and foundations free from water immersion, earthen slopes and finished surface cross slopes shall be set a minimum of 1 percent to keep corrosive chlorides from deicing salts to a minimum contact time

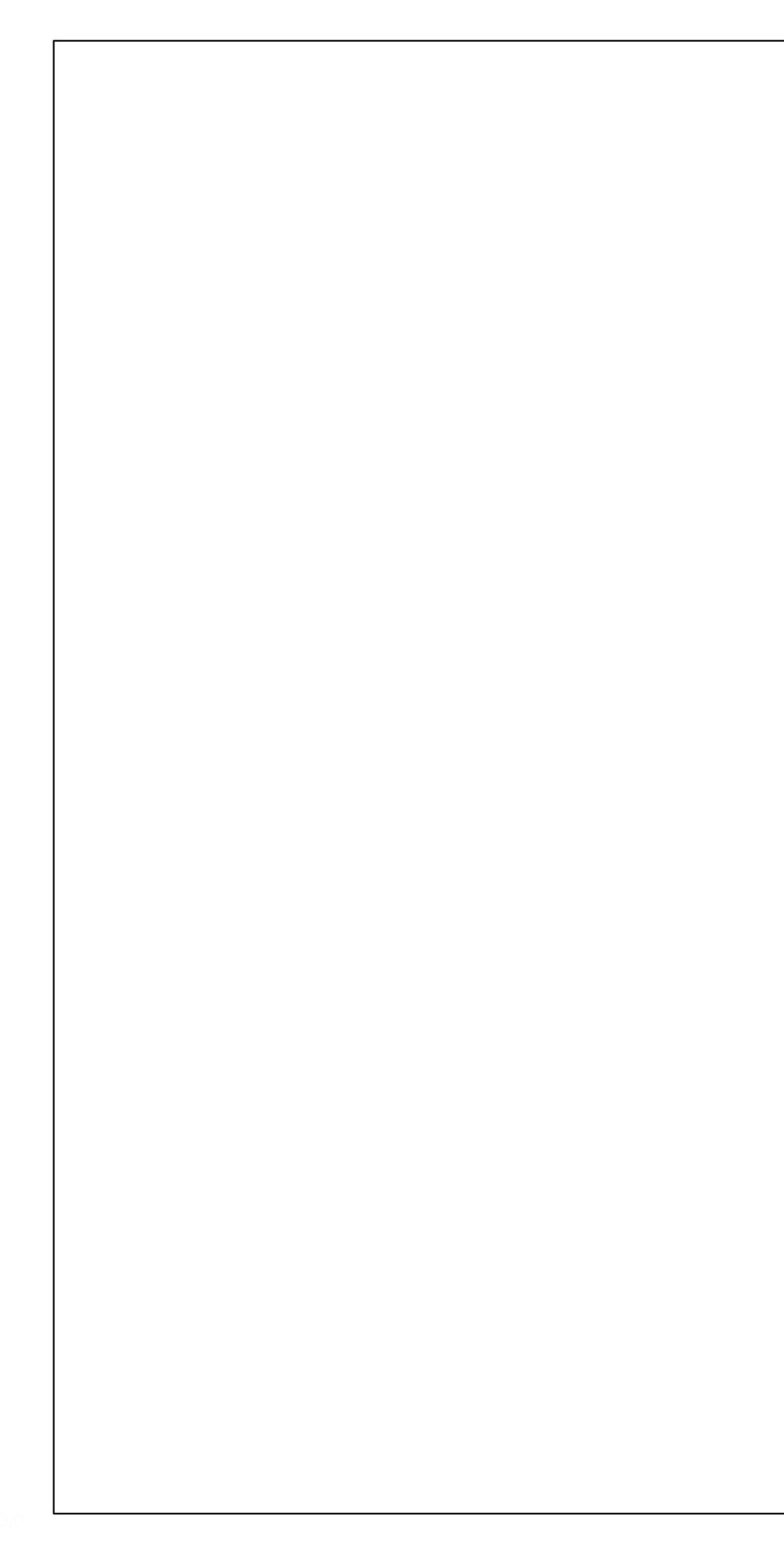
Soils Use Limitations and resolutions

Section 102.4 (b)(5)(ii):

3. DROUGHTY SOIL Existing suitable topsoil and soil amendments will be used during construction. EASILY ERODIBLE

Soils disturbed shall be stabilized with temporary and permanent vegetative cover as specified in the erosion control standard specifications contained herein 5. SEASONAL HIGH WATER TABLE


It shall be assumed that all excavations will encounter groundwater. Dewatering equipment shall be available at all times. Groundwater pumping for dewatering purposes shall utilize a pumped water filter bag as shown on the drawings standard detail 3—16 plan sheet 13


6. HYDRIC INCLUSIONS Hydric inclusions will not be an issue for this development. Soil studies conducted found depth to water at or below 6 ft for all areas tested 7. LOW STRENGTH / LANDSLIDE

- Cut and fills for the project site are minimal. 8. SLOW PERCOLATION
- Soils testing was conducted to define the percolation rates and limiting zones. Infiltration facilites have been designed accordingly PIPING
- Soil piping will be prevented by geotextile fabric which will prevent migration of soil particles 10. POOR SOURCE OF TOPSOIL

Topsoil for finished grading shall be amended or imported as necessary 11. FROST ACTION

- Foundations shall be set below frost line, and pavements shall have suitable base course to provide under drainage of substrate 12. SHRINK SWELL
- Unsuitable soil shall be removed and replaced with structural fill as required. Compaction testing will be performed on site as required under pavements, slabs and foundations. 13. PONDING
- Finished grading design will prevent ponding of surface water
- 14. WETNESS Finished grading design will prevent ponding of surface water

INSPECTION AND MAINTENANCE OF INFILTRATION BASINS (SEEPAGE BEDS)

IT IS THE RESPONSIBILITY OF THE INDIVIDUAL OWNER TO COMPLETE ALL REQUIRED MAINTENANCE ITEMS AND ENSURE PROPER OPERATION OF THE SYSTEM IN ACCORDANCE WITH THE FOLLOWING INFORMATION:

INFILTRATION BASINS:

A. MAINTENANCE

1. ALL TRASH AND DEBRIS WHICH MAY HAVE ACCUMULATED ON THE GRATE OR ON SURFACE OF THE STONE TRENCH SURROUNDING THE INLET SHALL BE REMOVED. THIS SHALL BE CONDUCTED ON AN AS NEEDED BASIS AND AFTER EACH RAINFALL EVENT 2. REPLACE INFILTRATION BASIN STONE AND GEOTEXTILE FABRIC LINING IF THE

INFILTRATION BASIN DOES NOT DRAIN WITHIN 96 HOURS AFTER EVERY STORM EVENT **REFER TO SCHEDULE ITEM 2**

B. INSPECTION SCHEDULE :

1. INLET STRUCTURES - GRATE TOP AND STONE INLET TRENCH - INSPECT AFTER EACH SIGNIFICANT STORM EVENT. CLEAN DEBRIS AND ENSURE STRUCTURAL INTEGRITY IS MAINTAINED. MEASURE TIME FOR FACILITY TO DRAIN TO A POINT WHERE NO STANDING WATER IS VISIBLE AFTER A SIGNIFICANT STORM EVENT.

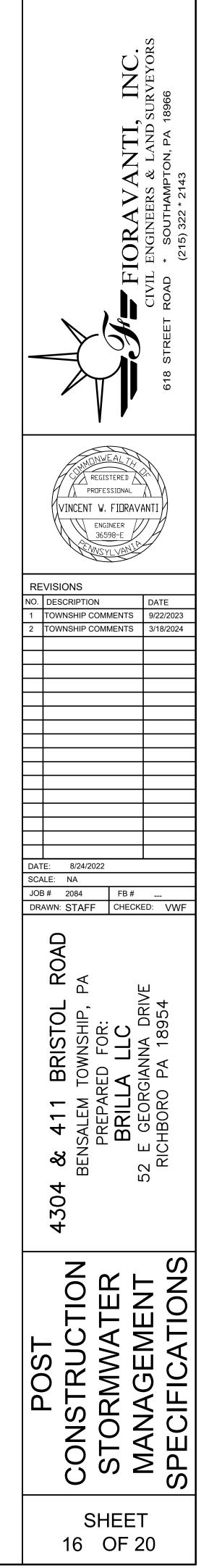
C LOGS

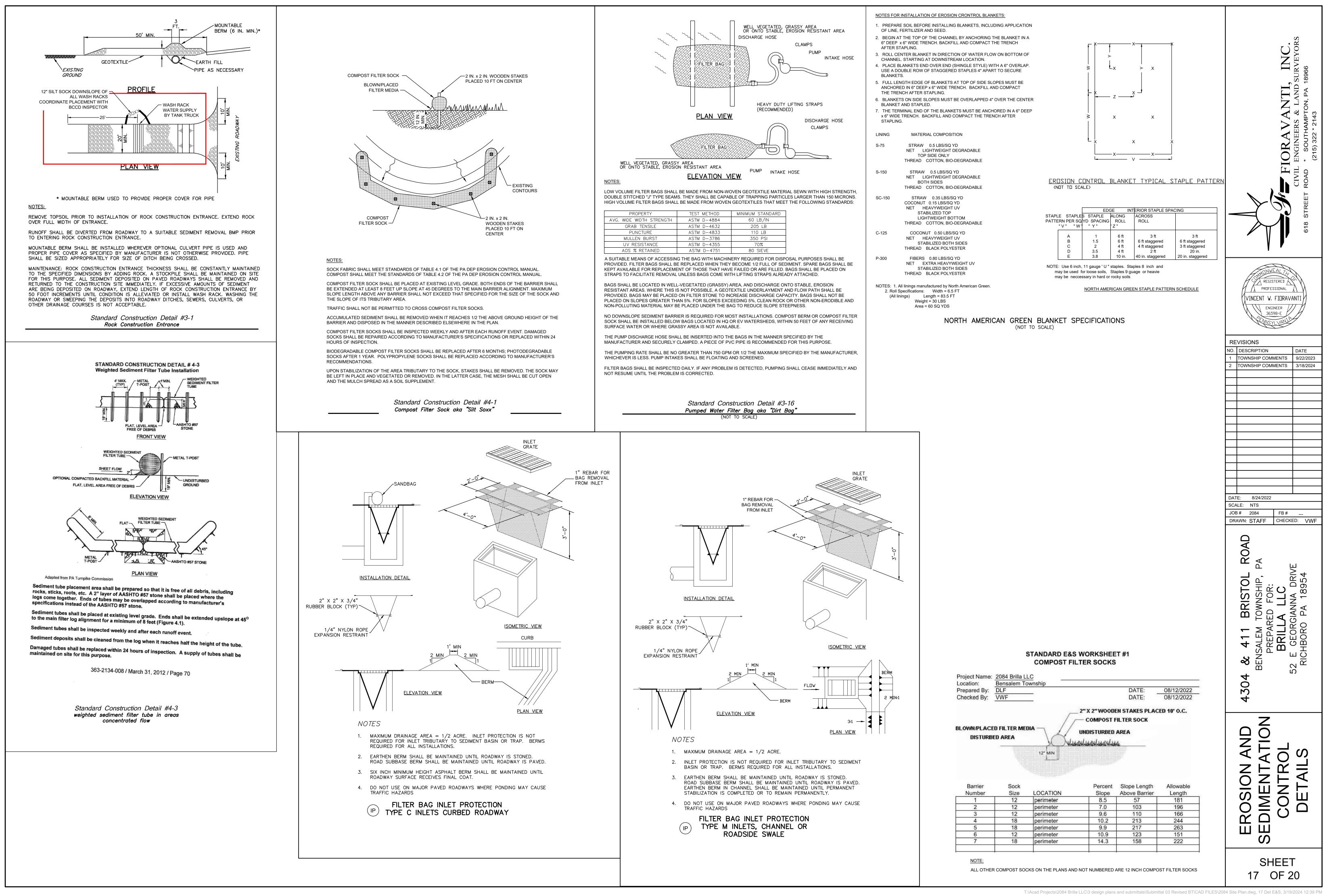
OWNERS SHALL MAINTAIN INSPECTION AND MAINTENANCE LOGS FOR ALL WORK 1 DONE ON INFILTRATION BASINS.

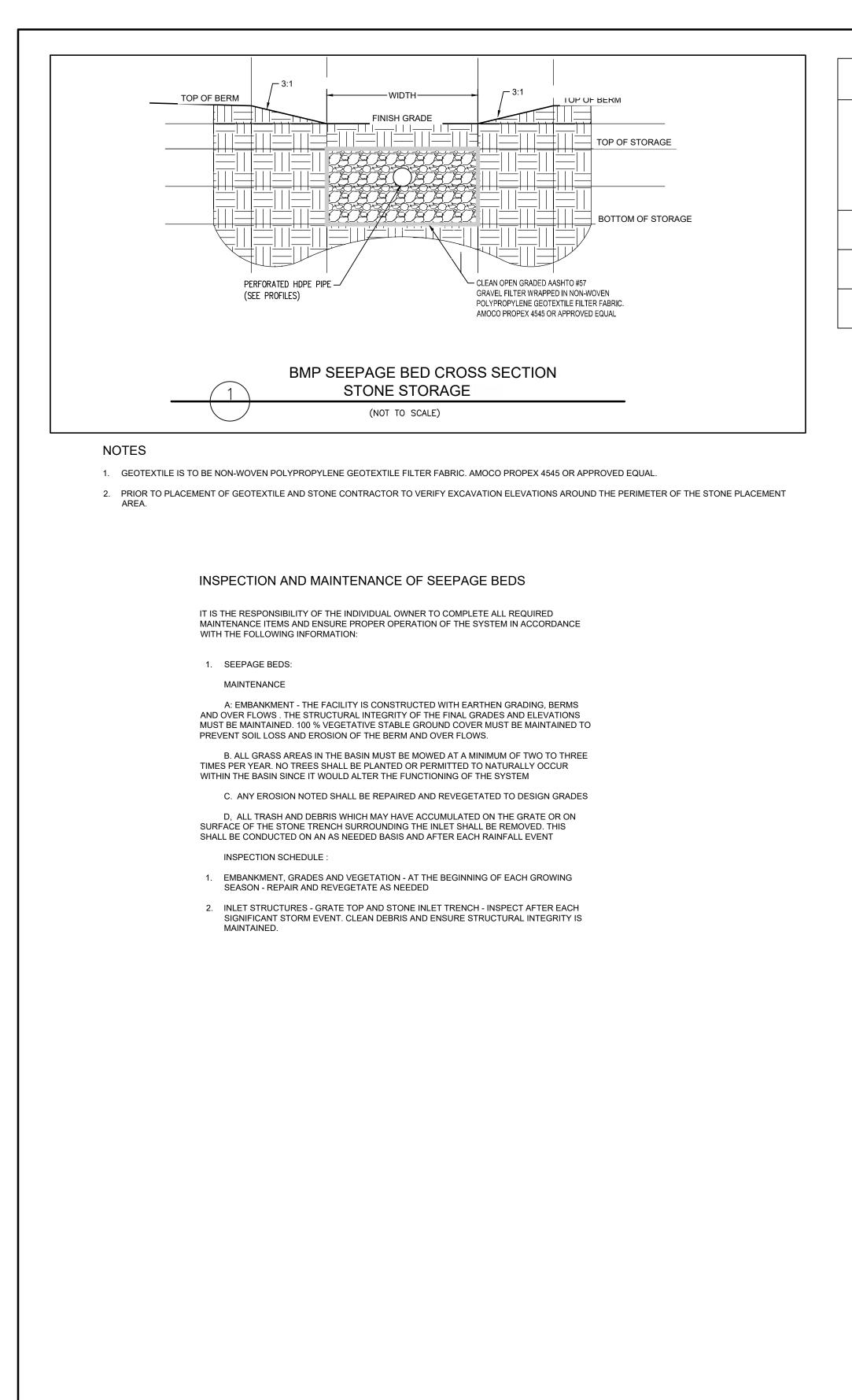
I"I, VINCENT W FIORAVANTI P.E. , ON THIS DATE (_____ HEREBY CERTIFY THAT THE SWM SITE PLAN MEETS ALL DESIGN STANDARDS AND CRITERIA OF THE NESHAMINY CREEK WATERSHED ACT 167 STORMWATER MANAGEMENT ORDINANCE OR PLAN."

SIGNATURE DATE

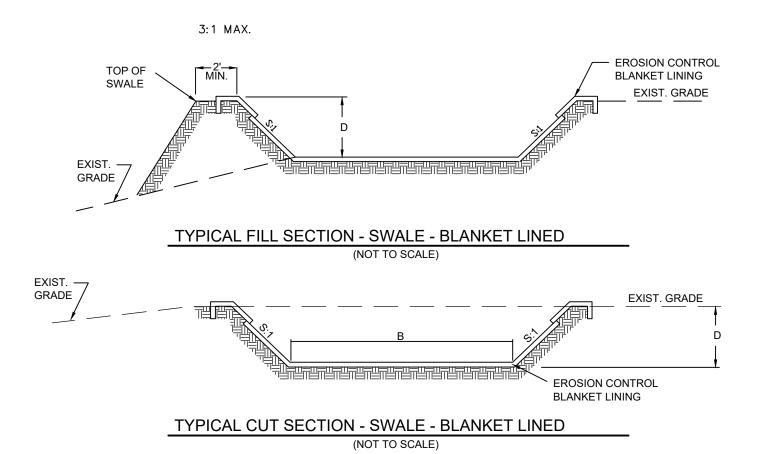
CONSTRUCTION SEQUENCE
DESCRIPTION
AT LEAST 3 DAYS PRIOR TO CONSTRUCTION, CONTACT PA ONE CALL
PRE-CONSTRUCTION MEETING WITH TOWNSHIP AND BCCD
CONSTRUCT STABILIZED CONSTRUCTION ENTRANCES SCE-1 AND SCE-2 AS SHOWN ON THE PLANS
INSTALL ALL SILT SOXX AS SHOWN ON THE PLANS. INSTALL WORK FENCE AROUND LIMITS OF SEEPAGE BEDS
CONSTRUCT AND STABILIZE STORM SEWER 1-7 TO 102
CONSTRUCT AND STABILIZE CHANNELS 1, 2, AND 3 TO DIVERT OFF SITE RUNOFFF AROUND THE WORK AREA
STRIP AND STOCKPILE TOPSOIL
ROUGH GRADE BUILDING PADS AND STABILIZE.
CONSTRUCT DWELLING, INSTALL UTILITIES, FINE GRADE SITE, TOPSOIL AND STABILIZE ALL AREAS EXCEPT SEEPAGE BEDS.
AFTER ENTIRE LOT IS STABLIZED INSTALL SEEPAGE BEDS. (SEE BELOW FOR SPECIFIC CONSTRUCTION SEQUENCE)
THE FOLLOWING CONTROLS CAN BE REMOVED, INSTALLED AND OR MODIFIED AFTER TRIBUTARY AREAS ARE STABILIZED. STABALIZED MEANS AT LEAST 70% PER SQUARE YARD OF PERIENNIAL VEGETATIVE COVER WITH A DENSITY CABABLE OF RESISTING EROSION. (SEE GENERAL NOTE B THIS SHEET) REMOVE SILT SOXX AND STABILIZED ENTRANCE


SEEPAGE BED CONSTRUCTION SEQUENCE								
STEP	DESCRIPTION							
1	PROTECT INFILTRATION BED AREA FROM COMPACTION PRIOR TO INSTALLATION TO THE EXTENT POSSIBLE.							
2	INSTALL AND MAINTAIN PROPER EROSION AND SEDIMENT CONTROL MEASURES DURING CONSTRUCTION.							
	EXCAVATE INFILTRATION BED BOTTOM TO AN UNCOMPACTED SUBGRADE FREE FROM ROCKS AS SHOWN ON THE PLANS. DO NOT COMPACT SUBGRADE							
	SCARIFY THE BOTTOM OF THE BED. THIS IS A CRITICAL STEP AND THE BOTTOM OF THE BED SHOULD BE INSPECTED AND APPROVED BY THE ENGINEER PRIOR TO FINAL STABILIZATION. AFTER APPROVAL IS OBTAINED INSTALL LANDSCAPING AND MULCH.							
2	PLANT, SEED AND STABILIZE REMAINING AREA. REINSTALL FENCE REMOVED FOOR CONSTRUCTION							

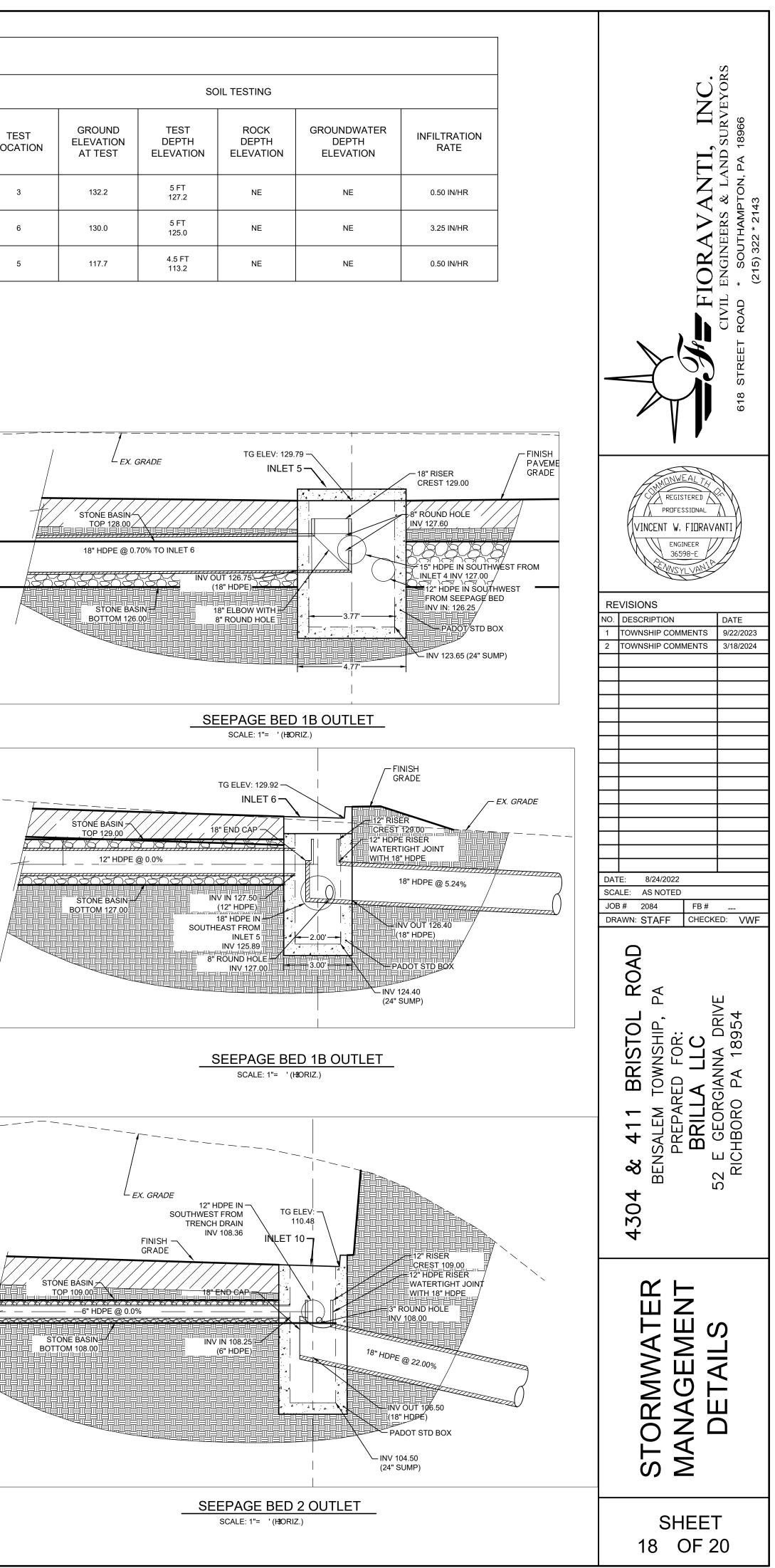

GENERAL NOTES:

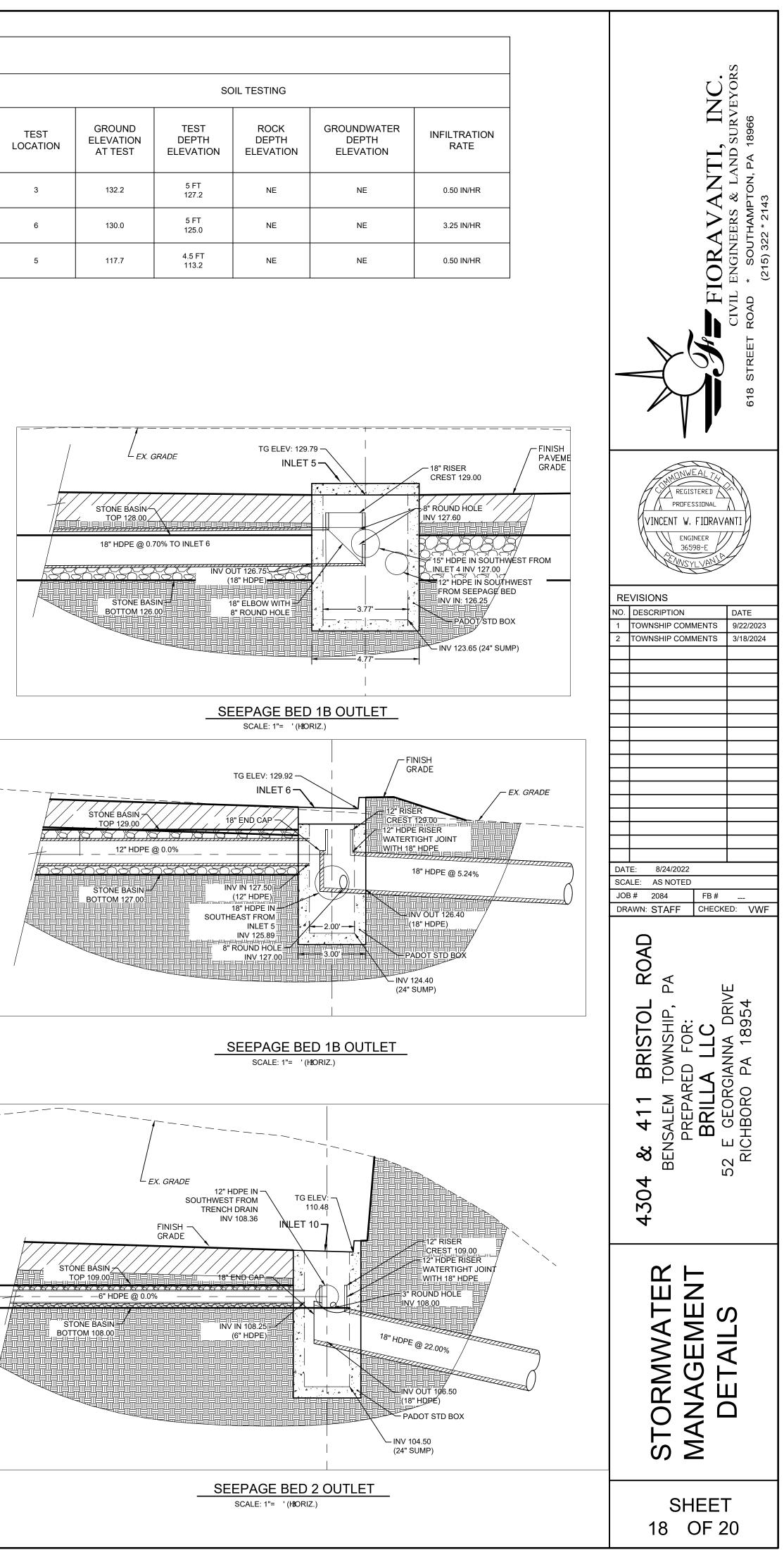

1. OPERATION AND MAINTENANCE OF ALL BEST MANAGEMENT PRACTICES (B.M.P.) ARE THE SOLE OBLIGATION OF THE OWNER. 2. THE PROPERTY OWNER WHERE BMP'S ARE TO BE INSTALLED SHALL RECORD THE STORMWATER MANAGEMENT PLAN, OPERATIONS AND MAINTENANCE AGREEMENTS AND EASEMENTS IN THE OFFICE OF THE RECORDER OF DEEDS FOR THE COUNTY. 3. IT SHALL BE UNLAWFUL TO ALTER ANY PERMANENT STORMWATER BESTMANAGEMENT PRACTICE REQUIRED OR ALLOW THE PROPERTY TO REMAIN IN A CONDITION WHICH IS NOT CONFORMED TO AN APPROVED BMP OPERATIONS AND MAINTENANCE PLAN UNLESS EXCEPTION IS GRANTED BY THE APPROPRIATE AUTHORITIES, INCLUDING DEP. 4. NO PERSON SHALL MODIFY, REMOVE, FILL, LANDSCAPE OR ALTER ANY STORMWATER MANAGEMENT (SWM) BEST MANAGEMENT PRACTICES (BMPS), FACILITIES, AREA, OR STRUCTURES UNLESS IT IS PART OF AN APPROVED MAINTENANCE PROGRAM AND WRITTEN APPROVAL OF DEP HAS BEEN OBTAINED.

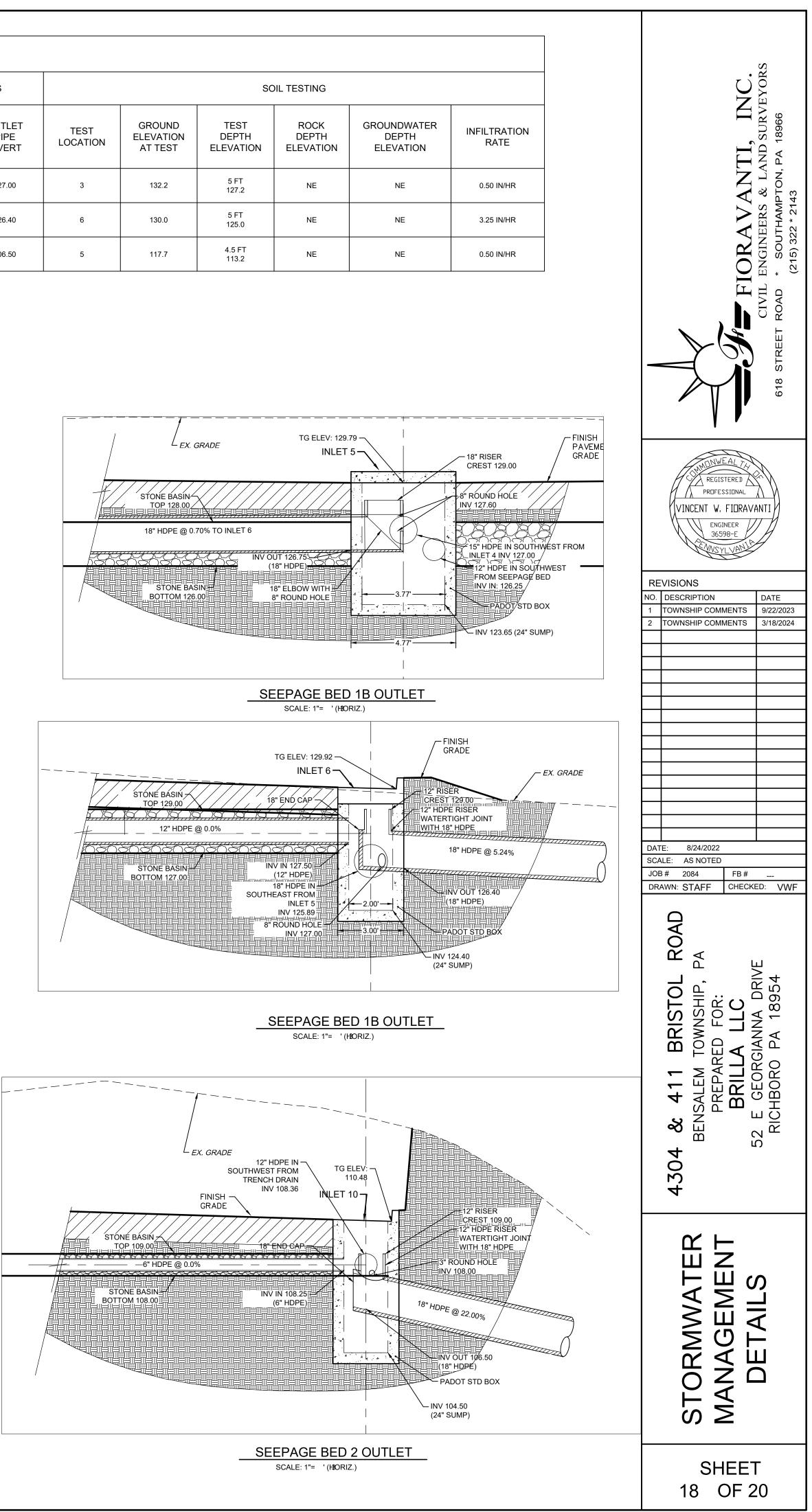
5. NO PERSON SHALL PLACE ANY STRUCTURE, FILL, LANDSCAPING, OR VEGETATION INTO A STORMWATER FACILITY OR BMP OR WITHIN A DRAINAGE EASEMENT WHICH WOULD LIMIT OR ALTER THE FUNCTIONING OF THE STORMWATER FACILITY OR BMP 6. THIS INSTRUMENT PROVIDES A BLANKET EASEMENT FOR ALL STORMWATER FACILITIES ON-SITE IN ORDER TO ALLOW THE MUNICIPALITY AND / OR DEP TO PERFORM INSPECTIONS AND EMERGENCY MAINTENANCE, IF NECESSARY, OF THESE FACILITIES. 7. AT LEAST THREE DAYS PRIOR TO INSTALLATION OF THE BEST MANAGEMENT PRACTICES (BMPS) AND/OR STORMWATER MANAGEMENT(SWM)FACILITIES THE TOWNSHIP ENGINEER INSPECTIONS AND DESIGN ENGINEER MUST BE CALLED TO SCHEDULE AN INSPECTION FOR EACH STORMWATER MANAGEMENT PRACTICE OR FACILITY.


8. THE STORMWATER FACILITIES SHOWN ON THESE PLANS ARE A BASIC AND PERPETUAL PART OF THE STORMWATER MANAGEMENT SYSTEM OF THE PROPOSED SITE LOCATED IN BENSALEM TOWNSHIP, BUCKS COUNTY, COMMONWEALTH OF PENNSYLVANIA, AND SUCH ARE TO BE PROTECTED AND PRESERVED IN ACCORDANCE WITH THE APPROVED FINAL PLANS BY THE OWNERS, THEIR SUCCESSORS AND ASSIGNS OF THESE LANDS. BENSALEM TOWNSHIP AND/OR ITS AGENTS RESERVE THE RIGHT AND PRIVILEGE TO ENTER UPON THESE LANDS FROM TIME TO TIME FOR THE INSPECTION OF THESE FACILITIES IN ORDER TO DETERMINE THAT PROPER OPERATION AND MAINTENANCE AND THAT THE STRUCTURAL AND DESIGN INTEGRITY IS BEING MAINTAINED BY THE OWNER.

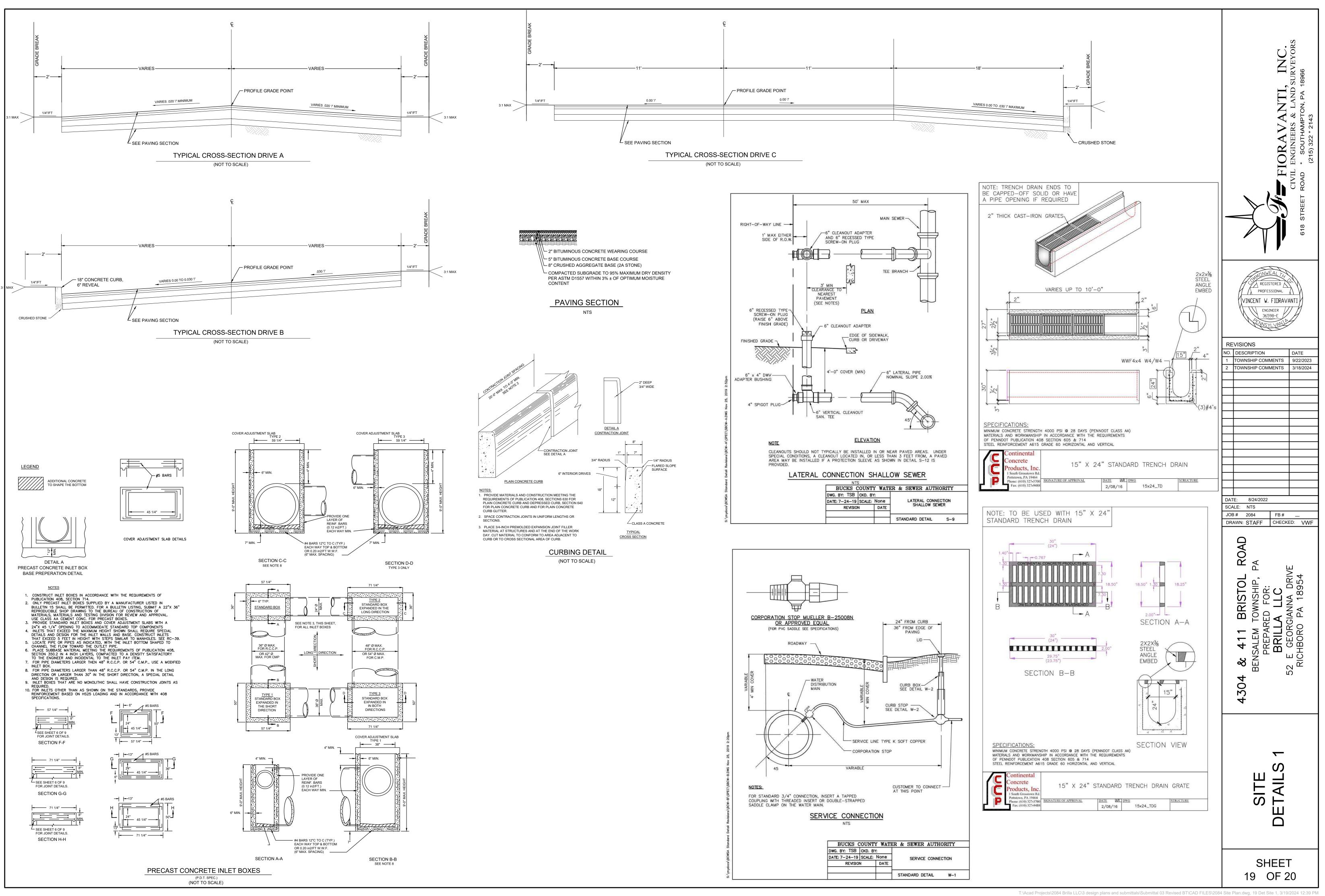
SEEPAGE BEDS											
		SITE WA	TERSHED	BED DIMENSIONS					ELEVATIONS		
SEEPAGE BED	BED TYPE	DRAINAGE AREA (AC)	IMPERVIOUS AREA (AC)	LENGTH (FEET)	WIDTH (FEET)	DEPTH (FEET)	BOTTOM OF STORAGE	TOP OF STORAG E	MINIMUM FINISH GRADE	OUTLET PIPE INVERT	TEST LOCATION
1A	STONE	0.44	0.27	72	40	2.00	126.00	128.00	129.79	127.00	3
1B	STONE	0.27	0.26	96	25	2.00	127.00	129.00	129.92	126.40	6
2	STONE	0.09	0.07	30	24	1.00	108.00	109.00	110.48	106.50	5

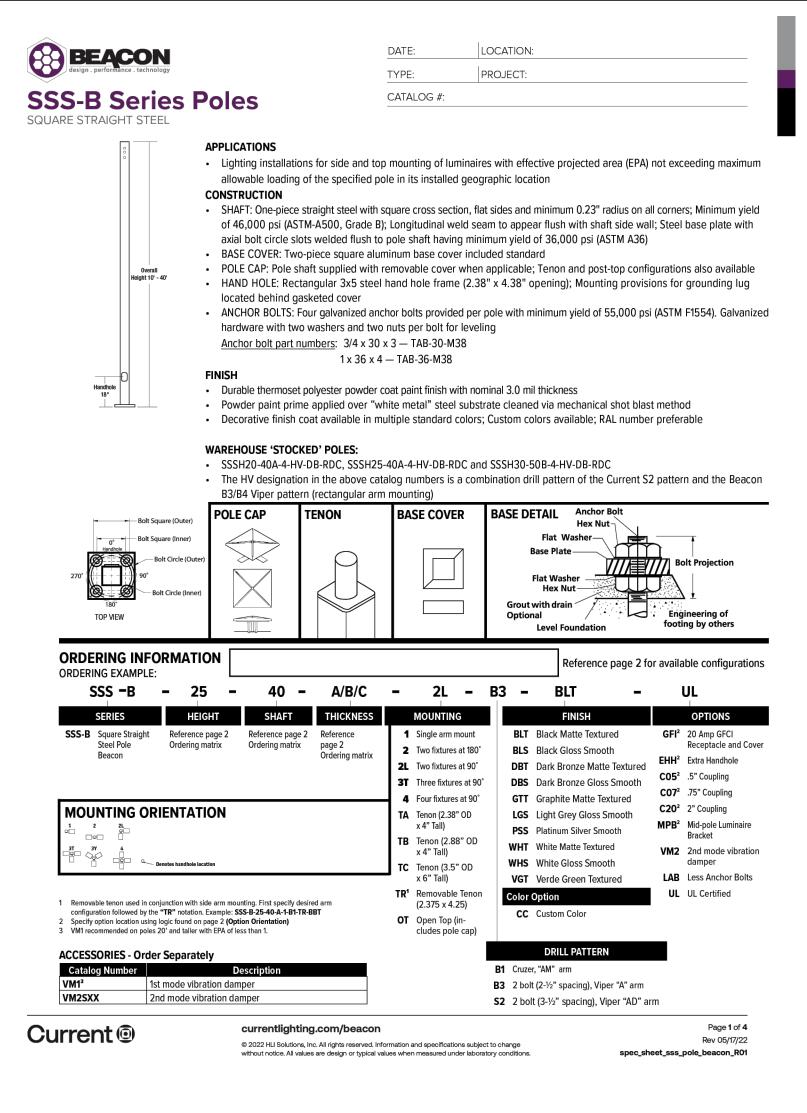


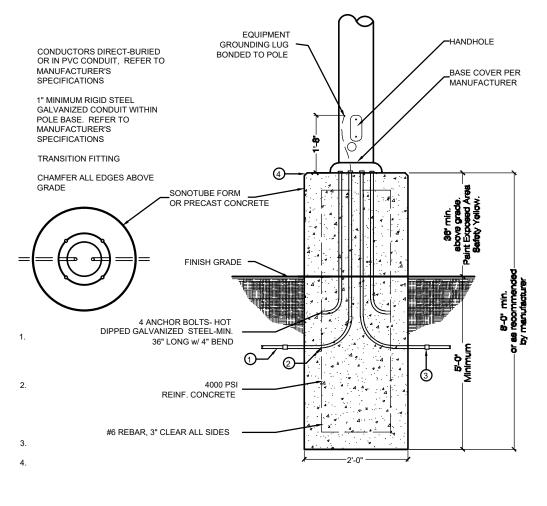

SWALE CONSTRUCTION NOTES:


- 1. EXCAVATION SHALL BEGIN AT DOWNSTREAM END OF THE SWALE. 2. ALL TREES, ROOTS AND OTHER OBJECTIONABLE MATERIAL SHALL
- BE REMOVED SO AS NOT TO INTERFERE WITH FLOW.
- 3. FILLS SHALL BE COMPACTED BY EARTHMOVING EQUIPMENT TO PREVENT EROSION.
- 4. INTERSECTION OF SIDES AND BOTTOM SHALL BE ROUNDED.
- 5. CHANGES IN HORIZONTAL AND VERTICAL ALIGNMENT SHALL BE GRADUAL, UNINTERRUPTED POSITIVE GRADE MUST BE MAINTAINED
- TO THE OUTLET. 6. STABILIZE SWALES IMMEDIATELY AFTER GRADING IS COMPLETE.
- 7. FOR ROCK LINED SWALES INSTALL CLASS 2 TYPE B GEOTEXTILE UNDER ROCK LINING.
- 8. S75 OR S150 ETC REFERS TO "NORTH AMERICAN GREENS EROSION CONTROL BLANKET" OR EQUAL IF APPROVED BY THE
- OWNER. 9. SWALE ROCK FILTERS SHOULD BE PLACED AT THE END OF SWALES UNTIL THE SWALES ARE STABILIZED.

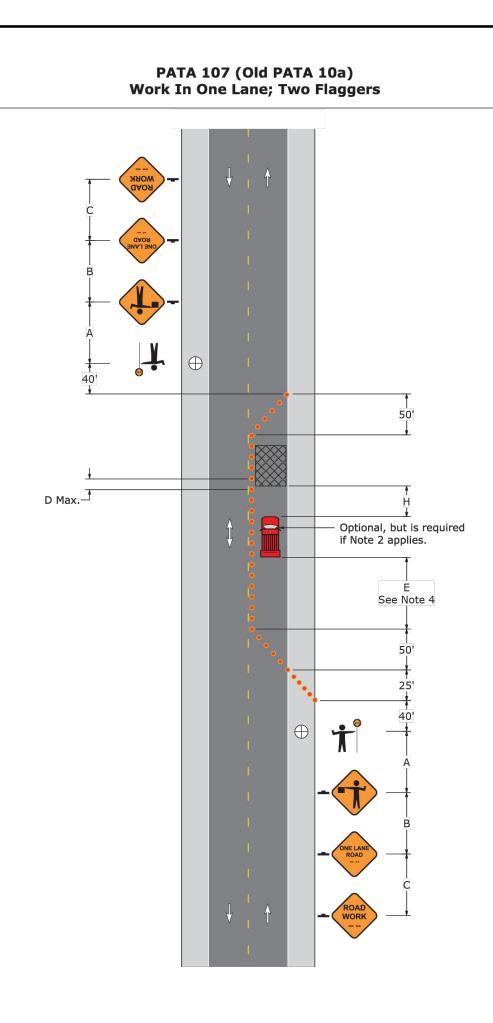
TRAPEZOIDAL SWALE SCHEDULE


SWALE	MIN BOTTOM WIDTH "B" (ft)	SIDE S LEFT (ft/ft)	SLOPES RIGHT (ft/ft)	MIN DEPTH "D" (ft)		TUDINAL DPE MAX (ft/ft)	LINING
1	2	3.0	3.0	0.5	0.020	0.025	S150
2	2	3.0	3.0	0.5	0.025	0.030	S150
3	2	3.0	3.0	0.5	0.020	0.074	SC150





T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, 18 Det SWM, 3/19/2024 12:39 PM



PATA 107 (Old PATA 10a) - Notes

1. Each flagger shall be clearly visible to traffic for a minimum distance of E and shall be in constant communication with all other flaggers.

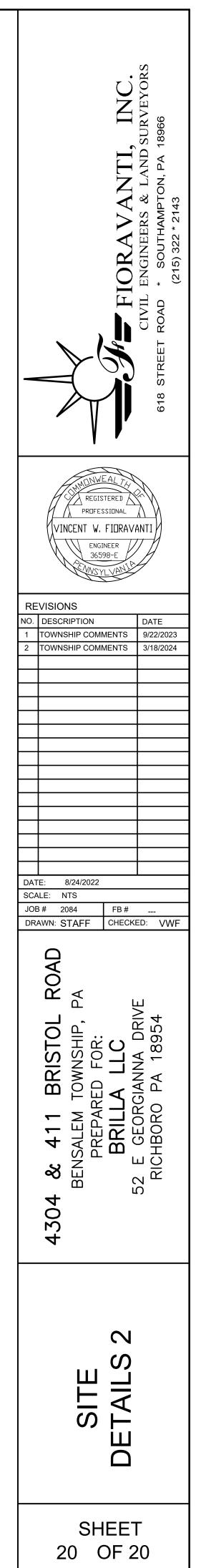
2. For operations of 15 minutes or less:
a. The Road Work (W20-1), One Lane Road (W20-4), and Flagger Symbol (W20-7) signs are not required.
b. All channelizing devices may be eliminated if a shadow vehicle is present.

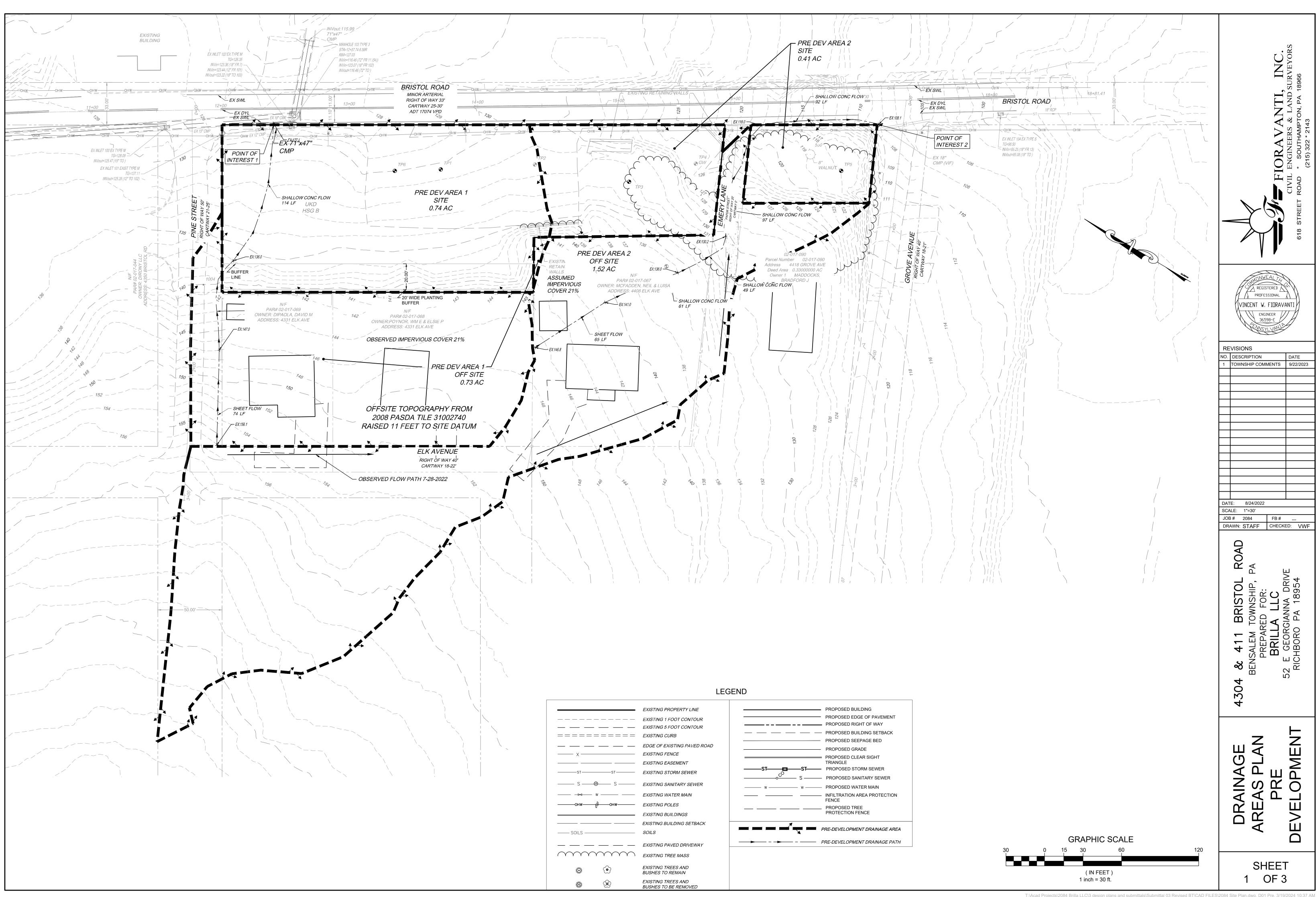
The buffer space shall be extended so that the two-way traffic taper is placed before a horizontal (or crest vertical) curve to provide adequate sight distance for the flagger and a queue of stopped vehicles.
 When a shadow vehicle is not used, distance E is measured from end of taper to beginning of work space.

Sign Spacing Chart

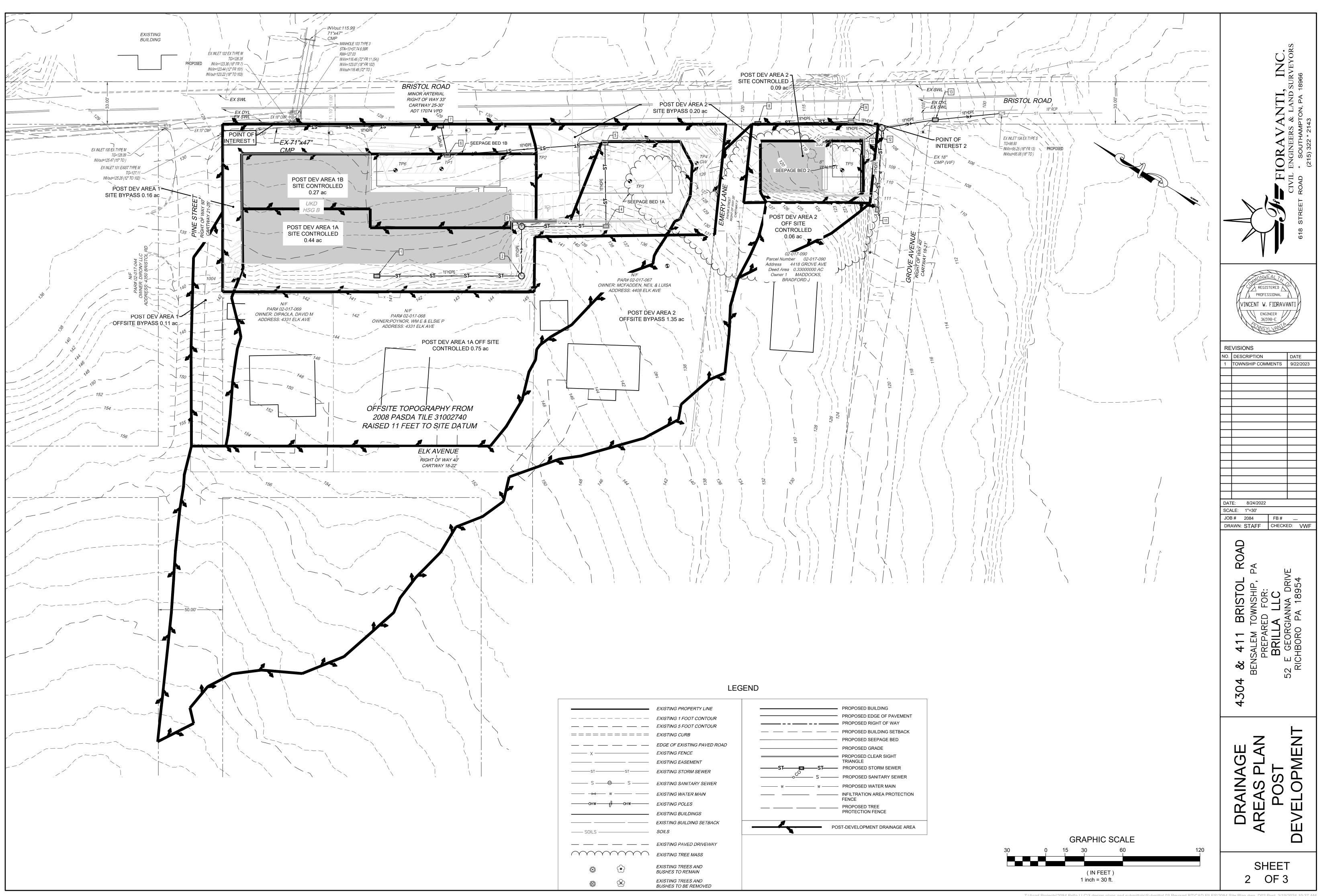
D¹

	Distance							
Condition	A	В	С	F				
	Feet	Feet	Feet	Feet				
Urban 35 MPH or less	100	100	100	100				
Urban Greater than 35 MPH	350	350	350	350				
Rural	500	500	500	500				
When multiple distance on advance warning so of the same series typ	igns, t							


Example: either all "AHEAD" or XXX FEET.


Taper Length Formulas								
S	L							
40 MPH or less	$L = \frac{WS^2}{60}$							
45 MPH or more	L = WS							
S = Regulatory Spe W = Width of Offset								

L = Length


Speed	W	L	1/2L	1/3L			izing D /pe (Le	D	Е	Н		
MPH	Feet	Feet	Feet	Feet	L	1/2L	1/3L	50'	Feet	Feet	Feet	
	10	105	55	35								
25	11	115	60	40	6	6	6	6	50	155	150	
	12	125	65	45								
	10	150	75	50	6							
30	11	165	85	55	7	6	6	6	60	200	150	
	12	180	90	60	7							
	10	205	105	70	7							
35	11	225	115	75	8	6	6	6	70	250	150	
	12	245	125	85	8							
	10	270	135	90	8		6					
40	11	295	150	100	9	6		6	80	305	150	
	12	320	160	110	9							
	10	450	225	150	11	6						
45	11	495	250	165	12	7	6	6	90	360	150	
	12	540	270	180	13	7						
	10	500	250	170	11	6						
50	11	550	275	185	12	7	6	6	100	425	250	
	12	600	300	200	13	7						
	10	550	275	185	11	6						
55 [11	605	305	205	12	7	6	6	110	495	250	
	12	660	330	220	13	7						
lote: C	Channe	lizing	devices	used	in tape	r shall	be equ	ially sp	aced a	t ½D	Max.	

Distance and Spacing Quick Reference Chart

T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, D01 Pre, 3/19/2024 10:37 AM

	EXI
	EXI
	EXI
	EDO
X	EXI
	EXI
STST	EXI
S S	EXI
₩	EXI
——онм———д——онм———	EXI
	EXI
	EXI
SOILS	SOI
	EXI
	EXI
	EX/
	BUS
**	EXI

PROPOSED BUILDING
PROPOSED EDGE OF PAVEMENT
PROPOSED RIGHT OF WAY
PROPOSED BUILDING SETBACK
PROPOSED SEEPAGE BED
PROPOSED GRADE
PROPOSED CLEAR SIGHT TRIANGLE
PROPOSED STORM SEWER
PROPOSED SANITARY SEWER
PROPOSED WATER MAIN
INFILTRATION AREA PROTECTION FENCE
PROPOSED TREE PROTECTION FENCE
POST-DEVELOPMENT DRAINAGE AREA

T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, D02 Post, 3/19/2024 10:37 AM

T:\Acad Projects\2084 Brilla LLC\3 design plans and submittals\Submittal 03 Revised BT\CAD FILES\2084 Site Plan.dwg, D03 Inl, 3/19/2024 10:37 AM

Stormwater Management Narrative Report

Prepared for 4304 and 411 Bristol Road Bensalem Township, PA 18966

> For Brilla LLC 52 East Georgianna drive Richboro, PA 19053

> > Date 8-24-2022

Revised 9-23-2023

PREPARED BY

FIORAVANTI, INC. 618 STREET ROAD SOUTHAMPTON, PENNSYLVANIA 18966

PROFESSIONAL ENGINEER REGISTRATION NUMBER SEAL

PROJECT NARRATIVE

Existing Conditions

This project involves the development of two tracts totaling a 1.1 acres +/- tract of land in Bensalem Township, Bucks County Pa.

The site is bordered on the northeast side by Bristol Road. Improvements on the site in its pre development condition include remnants of a paved parking area. Existing soil cover consists of lawn and wooded areas with underbrush. A significant area from the southwest drains to the site towards Bristol Road.

Under current conditions runoff from the site discharges east to Bristol Road. A substantial drainage area flows to the site from the southwestern residential properties. A site inspection was conducted on 7-28-2022 to verify drainage flow paths from these offsite areas. PASDA topography has been added to the plans to delineate these off site drainage areas.

Proposed Development

In the post development scenario, the property will be developed as commercial properties. The runoff from the new impervious surfaces on each lot will be controlled by three basins. Overflow discharges from each basin will be directed in the general direction of existing drainage paths southeast and northwest on Bristol Road.

Stormwater Quality and Volume Control

Infiltration is proposed for both properties using two of three underground infiltration beds labeled as seepage beds 1A and 1B. The beds are sized in accordance with PADEP requirements for infiltration footprint relative to drainage area and impervious area. Only site drainage areas and impervious areas are considered for footprint sizing as considering offsite areas would be impractical. The two beds also meet the requirements for infiltrating the 2 year storm based on PADEP methods which do not use Cn averaging. In addition, a SCS routing is included to verify the 2 year storm volume is infiltrated. Results of all these conflicting requirements are included in this report. Additional on site testing . TP6, was conducted in the vicinity of Seepage Bed 1 B to verify that the test results from location TP 1 are reasonable. Regardless of the results from test pits TP 1 and TP6, a conservatively low value of 1.0 in/hour was assumed for Seepage Bed 1B. This values is much less than the test results from TP1 and TP 6 with safety factors applied. The required infiltration volume is obtained as verified by routing and is documented in this report.

Stormwater Quantity

Peak flow rates are controlled as required in Bensalem code Section 196-135 Volume controls are provided by all three of the three infiltration basins as required inSection 196-135

Storm water flow rates, for the 1, 2, 5, 10, 25, 50 and 100 year storms, were calculated

using the Rational Method.

Hydraulics

Piping is sized for the 100 year storm to ensure conveyance to the seepage beds. The enclosed spreadsheet evaluates the manning's equation all pipe runs.

Travel lane encroachment of gutter flow along Bristol Road at the entrance of Drive A is documented to be much less than half a travel lane along Bristol Road. The fictitious structure used to document flow in this report is structure 200. 10 year discharge to the gutter is 0.5 cfs.

Basin overflow - Basin overflow is conveyed using the basin outlet structure barrel. All three basin outlet barrels have risers in the outlet structure. The crest of these risers form the emergency outlet control. Design discharges are the storage facility inflows. For basin 1 B design flows are the sum of Basin 1A and !B design inflows. This is a reasonably conservative design, accepted by many Townships.

Table of Contents

Cover Sheet	1
Table of contents	2
Narrative	3
Water Quality 2 year Storm	
2 Year Volume Summary from routing	5
PADEP Volume Worksheet	6
Output Summary SCS Method	7
Seepage Bed drain times	8
Hydrograph Input Summary and Details SCS Method	9
Cn worksheets	10
Tc value worksheets	23
Hydrograph SCS Method 1-2 year storms	25
Peak Rate Control 1 through 100 year Storms	
Peak Rate Output Summary Rational Method	80
Input Summary Rational Method	81
C Value table	82
C value worksheets	83
Hydrograph Rational Method 1-100 yr storm	96
Hydraulics	
Emergency Spillways	271
Pipe capacity	272
Distribution Pipe perforations	274
Stuctures details	275
Gutter flow at Drive A entrance	276
Erosion Control	
Channels	278
Compost filter sock	279
Appendix	
Stormwater Infiltration Testing Results	280
	end page

2084 Brilla LLC Bensalem Township Project: Location:

By: Date: 9/22/2023

DLF

The following table demonstates compliance with Act 167 Section 303. Volume Control

2 YEAR VOLUME CONTROL VOLUME SUMMARY

BMP	Condition	2 Year Volume	2 Year Volume Infiltrated	2 Year Volume Detained
Seepage	Inflow	5169		
Bed 1A	Outflow	2301		
Bed IA	Treated	2868	2868	
Soonago	Inflow	5215		
Seepage – Bed 1B –	Outflow	2682		
Deu ID	Treated	2533	2533	
Soonago	Inflow			
Seepage – Bed 2 –	Outflow			
Deu Z	Treated	0	0	
TOTAL			5401	
year infiltrate	d volume for this s	ite is	5401	cf
equired 2 yea	ar infiltrated volume	e for this site is	5088	cf

end page

Pennsylvania Stormwater Best Management Practices Manual VOLUME WORKSHEET

PROJECT:

2084 Brilla LLC

2-Year Rainfall 3.26 in

Pre-Construction Conditions

Cover Type/ Condition	Soil Type	Area (sf)	Area (ac)	Cn	s	la (0.2*S)	Q Runoff (in)	Runoff Volume ² (ft ³)	Remarks
Woodland	A			30	23.33	4.67	0.09		
Meadow	A			30	23.33	4.67	0.09		
Lawn	A			39	15.64	3.13	0.00		
Impervious	A			98	0.20	0.04	3.03		
Woodland	В	9757	0.22	55	8.18	1.64	0.27	219	
Meadow	В			58	7.24	1.45	0.36		
Lawn	В	30056	0.69	61	6.39	1.28	0.47	1174	
Impervious	В	10106	0.23	98	0.20	0.04	3.03	2549	
Woodland	С			70	4.29	0.86	0.86		
Meadow	С			71	4.08	0.82	0.91		
Lawn	С			74	3.51	0.70	1.08		
Impervious	С			98	0.20	0.04	3.03		
Woodland	D			77	2.99	0.60	1.25		
Meadow	D			78	2.82	0.56	1.32		
Lawn	D			80	2.50	0.50	1.45		
Impervious	D			98	0.20	0.04	3.03		
Total			1.15					3942	

Developed Conditions:

Cover Type/ Condition	Soil Type	Area (sf)	Area (ac)	Cn	S	la (0.2*S)	Q Runoff (in)	Runoff Volume ² (ft ³)	Remarks
Woodland	A			30	23.33	4.67	0.09		
Meadow	A			30	23.33	4.67	0.09		
Lawn	A			40.95	14.42	2.88	0.01		
Impervious	A			98	0.20	0.04	3.03		
Woodland	В			55	8.18	1.64	0.27		
Meadow	В			58	7.24	1.45	0.36		
Lawn	В	18295	0.42	64.05	5.61	1.12	0.59	899	
Impervious	В	32234	0.74	98	0.20	0.04	3.03	8132	
Woodland	C			70	4.29	0.86	0.86		
Meadow	C			71	4.08	0.82	0.91		
Lawn	C			77.7	2.87	0.57	1.30		
Impervious	C			98	0.20	0.04	3.03		
Woodland	D			77	2.99	0.60	1.25		
Meadow	D			78	2.82	0.56	1.32		
Lawn	D			84	1.90	0.38	1.73		
Impervious	D			98	0.20	0.04	3.03		
Total			1.16					9031	
Volume Increa		5088	cf	Post De	evelopme	ent multiplie	۶r	1.05	
Volume Iniltra	ted	5401	cf						end

	2084 Brilla Ll Bensalem To										By: Date:			
Peak Rat	e Control	Summary	Table			SCS Met	hod							
Point of li	nterest	1	Neshaminy Cr	eek District B										
		Post	Development R	unoff and Disch	arges		Seepage E	Bed 1A		Outlets				
Design	1A	1A	1A	S	eepage Bed 1	4	Length	72.00	ft		Invert	Quantity	Size	
Storm	Site	Off Site	Total	Discharge	Elevation	Storage	Width	40.00	ft	Barrel	126.75	1	18.00	
1	1.09	0.62	1.71	0.05	127.72	2015	Area	2880.00	sf	Outlet	127.60	1	8.00	"orifice V
2	1.46	1.05	2.50	0.27	127.89	2214	Floor	126.00	ft	Spillway	129.00	1	18.00	"orifice H
Hydroflow col	с	с	с	с	i	j	Тор	128.00	ft	Outlet				"orifice V
Hydroflow row	6	7	8	9	9	9	Depth	2.00	ft	Outlet				"orifice H
							Voids	0.40		Spillway				ft weir
Point of I	nterest	1												
	Post Development Runoff and Discharges						Seepage E	Bed 1B		Outlets				
Design	1B	1B	;	Seepage Bed 1E	3		Length	96.00	ft		Invert	Quantity	Size	
Storm	Site	Total	Discharge	Elevation	Storage		Width	25.00	ft	Barrel	126.40	1	18.00	"
1 2	1.04 1.27	1.04 1.27	0.66	127.49	472 550		Area Floor	2400.00 127.00		Outlet	127.00 129.00	1 1	8.00	"orifice V "orifice H
Z Hydroflow col	1.21 c	1.27 c	0.83	127.58	556	I	Top	127.00	ft ft	Spillway Outlet	129.00	I	12.00	orifice V
Hydroflow col Hydroflow row	с 10	с 11	с 12	12	j 12		Depth	2.00	ft	Outlet				"orifice H
nyaronon ron	10	11	12	12	12		Voids	0.40		Spillway				ft weir
² oint of li	nterest	2	Neshaminy Cr	eek District B			Seepage E	Bed 2		Outlets				
		Post	Development R	unoff and Disch	arges		Length	30.00	ft		Invert	Quantity	Size	
Design				:	Seepage Bed 2	2	Width	24.00	ft	Barrel	106.50	1	18.00	"
Storm	Site	Off Site	Total	Discharge	Elevation	Storage	Area	720.00	sf	Outlet	108.00	1	3.00	"orifice V
	0.29	0.00	0.29	0.15	108.50	147	Floor	108.00	ft	Spillway	109.00	1	12.00	"orifice H
1	0.36	0.02	0.37	0.18	108.67	197	Тор	109.00	ft	Outlet				"orifice V
1 2		с	с	с	i	j	Depth	1.00	ft	Outlet				"orifice H
	с 20	21	22	23	23	23	Voids	0.40		Spillway				ft weir

Seepage Bed Drain Times

Structure	Rainfall	Length	Width	Floor Area	Max Water Depth	Void Ratio	Maximum Water Volume	Test Location	Tested Infiltration Rate	Design Infi	Itration Rate	Total Drain Time
		ft	ft	sf	ft		cf		in/hr	in/hr	cfs	hour
Seepage Bed 1A	3.26	72	40	2880	2.00	0.40	2304	3	0.50	0.25	0.0000058	38.40
Seepage Bed 1B	3.26	96	25	2400	2.00	0.40	1920	1	13.50	6.75	0.0001563	1.42
Seepage Bed 2	3.26	30	24	720	1.00	0.40	288	5				

ocation:	Bensalem To	ownsnip							Date:	9/22/2023
				<u>Input</u>	Summary	SCS Method	<u>1</u>			
Point of Interest	Name	Discharge To	Condition	Location	Area (ac)	Impervious	Lawn	Cn	Tc (min)	Notes
1	1	Property Line	Present	Site	0.74	0.19		69.89	6.00	
1	1	Property Line	Present	Offsite	0.73	0.16		69.11	6.00	
1	1A	Seepage Bed	Developed	Site	0.44	0.27		84.88	6.00	
1	1A	Seepage Bed	Developed	Offsite	0.75	0.15	0.60	68.40	6.00	
1	1B	Seepage Bed	Developed	Site	0.27	0.26	0.01	96.74	6.00	
1	1	Bypass	Developed	Site	0.16	0.07	0.09	78.90	6.00	
1	1	Bypass	Developed	Offsite	0.11	0.04	0.07	74.45	6.00	
2	2	Property Line	Present	Site	0.41	0.04	0.37	62.64	6.77	
2	2	Property Line	Present	Offsite	1.52	0.32	1.20	68.36	6.77	
2	2	Seepage Bed	Developed	Site	0.09	0.07	0.02	90.46	6.00	
2	2	Seepage Bed	Developed	Offsite	0.06	0.00		55.00	6.00	
2	2	Bypass	Developed	Site	0.20	0.07		75.93	6.00	
2	2	Bypass	Developed	Offsite	1.35	0.32		69.50	6.00	
					•		•		ŀ	
Seepage E	Bed Loadings			Reccomended			Reccomended	Proposed		
	Seepage	Impervious	Ratio	Bed	Drainage	Ratio	Bed	Bed		
	Bed	Area	to 1	Footprint	Area	to 1	Footprint	Footprint	Result	
	1A	11761	5.00	2352	19166	8.00	2396	2880	120%	
	1B 2	11326	5.00	2265	11761	8.00	1470	2400	106%	

		-	Runoff curve			
Project	2084 Brilla LL	С			B	y: DLF
ocation:	Bensalem Tov	vnship			Date	e: 09/22/2023
Condition	Present	7	POI	1		
Ex imp credit	0.80	1		Property Line		
awn x	1.00		Discharge to Location	Site		
awiix	1.00		Location	Watershed Area	0.74	00100
Runoff curve	e number Cn			Watersheu Area	0.74 0.0012	acres sq mi
	Soil name	Cover	Description	Cn	Area	"Cn" x Area
	·		•		acres	acres
	A	Impervious		98.00		
soil group	A	Turf		39.00		
total in acres	Α	Meadow		30.00		
	A	Woods		30.00		
	В	Impervious		98.00	0.19	18.82
soil group	В	Turf		61.00	0.46	28.06
total in acres	В	Meadow		58.00	0.00	4.04
0.74	В	Woods		55.00	0.09	4.84
soil group	C C	Impervious Turf		98.00 74.00		
total in acres	C	Meadow		71.00		
	C	Woods		70.00		
	D	Impervious		98.00		
soil group	D	Turf		80.00		
total in acres	D	Meadow		78.00		
	D	Woods		77.00		
				Total	0.74	51.72
			Cn=	69.89	25.95%	Impervious
	Runoff Volum			. <i>.</i>		
	Storm	Rainfall	Runoff	Volume		
	yr MDE	in	in	cf		
	MDE		0.22		25.0%	
	EISA 1	2.71	0.22 0.55	1490	25.9%	
	2	3.26	0.86	2303		
	5	4.11	1.40	3750		
	10	4.81	1.89	5071		
	25	5.83	2.66	7147		
	50	6.70	3.36	9023		
	100	7.63	4.14	11109		

				e number and ru			
Project	2084 Brilla LL	С			By:DLF Date:09/22/2023		
Location:	Bensalem Tov	wnship					
		•					
Condition	Present		POI	1			
Ex imp credit	1.00		Discharge to	Property Line			
Lawn x	1.00		Location	Offsite			
				Watershed Area	0.73	acres	
Runoff curve	e number Cn				0.0011	sq mi	
	Soil name	Cover D	Description	"Cn"	Area	"Cn" x Area	
				-, I	acres	acres	
	A	Impervious		98.00			
soil group	A	Turf		39.00			
total in acres	A	Meadow		30.00			
	A	Woods		30.00			
	В	Impervious		98.00	0.16	15.68	
soil group total in acres	В	Turf		61.00	0.57	34.77	
	В	Meadow		58.00			
0.73	В	Woods		55.00			
	С	Impervious		98.00			
soil group	С	Turf		74.00			
total in acres	С	Meadow		71.00			
	С	Woods		70.00			
	D	Impervious		98.00			
soil group	D	Turf		80.00			
total in acres	D	Meadow		78.00			
	D	Woods		77.00			
				Total	0.73	50.45	
	Dum off \ / olumo		Cn	= 69.11	21.92%	Impervious	
	Runoff Volum Storm		Runoff	Volume			
		Rainfall		Volume cf			
	yr MDE	in	in 0.22				
	MDE		0.22	592 502			
	EISA	0.71	0.22 0.52	592			
	1	2.71		1390			
	2	3.26	0.82	2170			
	5	4.11	1.35	3566			
	10	4.81	1.83	4846			
	25	5.83	2.59	6864			
	50 100	6.70 7.63	3.28 4.05	8693 10730			
		(h 4	4 05	107.30			

Project	2084 Brilla LL	С			By: DLF			
ocation:	Bensalem Tov	vnship			Dat	e: 09/22/2023		
Condition	Developed		POI	<u>1A</u>				
Ex imp credit	1.00	_	Discharge to	Seepage Bed				
.awn x	1.05		Location	Site				
				Watershed Area	0.44	acres		
Runoff curve	e number Cn				0.0007	sq mi		
					area			
	Soil name	Cover	Description	"Cn"	Area	"Cn" x Area		
					acres	acres		
	A	Impervious		98.00				
soil group	A	Turf		40.95				
total in acres	A	Meadow		30.00				
	A	Woods		30.00				
	В	Impervious		98.00	0.27	26.46		
soil group	В	Turf		64.05	0.17	10.89		
total in acres	В	Meadow		58.00				
0.44	В	Woods		55.00				
	С	Impervious		98.00				
soil group	С	Turf		77.70				
total in acres	С	Meadow		71.00				
	С	Woods		70.00				
	D	Impervious		98.00				
soil group	D	Turf		84.00				
total in acres	D	Meadow		78.00				
	D	Woods		77.00 Total	0.440	37.35		
				i otai	0.440	37.35		
			Cn=	84.88	61.36%	Impervious		
	Runoff Volume	es	011		000/0			
	Storm	Rainfall	Runoff	Volume				
	yr	in	in	cf				
	yr MDE		0.09	142				
	EISA		0.09	142				
	1	2.71	1.34	2140				
	2	3.26	1.80	2875				
	5	4.11	2.55	4066				
	10	4.81	3.18	5082				
	25	5.83	4.13	6597				
	50	6.70	4.95	7911				
	100	7.63	5.84	9333				

Project	2084 Brilla LL				By:DLF Date:09/22/2023		
Location:	Bensalem Tov	vnship					
		-					
Condition	Developed		POI	1A			
Ex imp credit	1.00		Discharge to	Seepage Bed			
Lawn x	1.00		Location	Offsite			
				Watershed Area	0.75	acres	
Runoff curve	e number Cn				0.0012	sq mi	
	Soil name	Cover	Description	"Cn"	Area	"Cn" x Area	
			Description		acres	acres	
	A	Impervious		98.00			
soil group	A	Turf		39.00			
total in acres	A	Meadow		30.00			
	A	Woods		30.00			
	В	Impervious		98.00	0.15	14.70	
soil group	В	Turf		61.00	0.60	36.60	
total in acres	В	Meadow		58.00			
0.75	В	Woods		55.00			
	С	Impervious		98.00			
soil group	С	Turf		74.00			
total in acres	С	Meadow		71.00			
	С	Woods		70.00			
	D	Impervious		98.00			
soil group	D	Turf		80.00			
total in acres	D	Meadow		78.00			
	D	Woods		77.00			
				Total	0.75	51.30	
			Cn	= 68.40	20.00%	Impervious	
	Runoff Volum		- <i>"</i>				
	Storm	Rainfall	Runoff	Volume			
	yr	in	in	cf			
	MDE		0.23	629			
	EISA	0.74	0.23	629			
	1	2.71	0.50	1356			
	2	3.26	0.78	2136			
	5	4.11	1.30	3540			
	10	4.81	1.78	4833			
	25 50	5.83 6.70	2.53 3.21	6879 8737			
	50	0.70	3.ZT	0/3/			
	100	7.63	3.97	10810			

13 of 293

			Runoff curve				
Project	2084 Brilla LL	С			By: DLF		
Location:	Bensalem Tov	wnship			Dat	e: 09/22/2023	
o		-	501				
Condition	Developed		POI	1			
Ex imp credit	1.00		Discharge to	Bypass			
Lawn x	1.05		Location	Site			
				Watershed Area	0.16	acres	
Runoff curv	e number Cn				0.0003	sq mi	
	Soil name	Cover D	escription	"Cn"	Area	"Cn" x Area	
			•	-	acres	acres	
	A	Impervious		98.00			
soil group	A	Turf		40.95			
total in acres	A	Meadow		30.00			
	A	Woods		30.00			
	В	Impervious		98.00	0.07	6.86	
soil group total in acres	В	Turf		64.05	0.09	5.76	
	В	Meadow		58.00			
0.16	В	Woods		55.00			
	С	Impervious		98.00		_	
soil group	С	Turf Meadow		77.70			
total in acres	C C	Woods		71.00			
	D	Impervious		98.00			
soil group	D	Turf		84.00			
total in acres	D	Meadow		78.00			
	D	Woods		77.00			
		1		Total	0.16	12.62	
				_		·	
			Cn	= 78.90	43.75%	Impervious	
	Runoff Volum		D "				
	Storm	Rainfall	Runoff	Volume			
		in	in 0.12	cf			
	MDE		0.13	78			
	EISA	0.74	0.13	78 567			
	1	2.71 3.26	0.98 1.38	567 799			
	2 5	3.20 4.11	2.05	1188			
	10	4.11	2.03	1528			
	25	5.83	3.52	2044			
	50	6.70	4.30	2498			
	100	7.63	5.15	2993			

	WOR	KSHEET: 2 R	lunoff curve	e number and ru	unoff	
Project	2084 Brilla LL					y: DLF
Location:	Bensalem Tov	vnship			Date	e: 09/22/2023
Condition	Developed	7	POI	1		
Ex imp credit	1.00	_				
•			Discharge to	Bypass		
Lawn x	1.00		Location	Offsite	0.44	
				Watershed Area	0.11	acres
Runoff curve	e number Cn				0.0002	sq mi
	Soil name	Cover D	escription	"Cn"	Area	"Cn" x Area
					acres	acres
	A	Impervious		98.00		
soil group	A	Turf		39.00		
total in acres	A	Meadow		30.00		
	A	Woods		30.00		
	В	Impervious		98.00	0.04	3.92
soil group	В	Turf		61.00	0.07	4.27
total in acres	В	Meadow		58.00		
0.11	В	Woods		55.00		
	С	Impervious		98.00		
soil group	C	Turf		74.00		
total in acres	С	Meadow		71.00		
	С	Woods		70.00		
	D	Impervious		98.00		
soil group	D	Turf		80.00		
total in acres	D	Meadow		78.00		
J	D	Woods		77.00		
	Runoff Volume	~~	Cn	Total	0.11 36.36%	8.19 Impervious
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		0.17	69		
	EISA		0.17	69		
	1	2.71	0.75	300		
	2	3.26	1.10	441		
	5	4.11	1.71	683		
	10	4.81	2.25	899		
	25	5.83	3.09	1232		
	50	6.70	3.83	1529		

Condition Ex imp creditPresent 0.80 1.00POI Discharge to No2LocationSite Watershed Area0.41 0.0006acrRunoff curve number CnCover Description"Cn"Area 0.0006"Soil nameCover Description"Cn"Area acres"Soil group total in acresAImpervious98.00_Soil group total in acresAMeadow30.00_Soil group total in acresBImpervious98.00_Soil group total in acresBMeadow55.00_Soil group total in acresBMeadow58.00_Soil group total in acresCImpervious98.00_Soil group total in acresCImpervious98.00_Soil group total in acresCImpervious98.00_CImpervious98.00Soil group total in acresCMeadow55.00_CImpervious98.00Soil group total in acresCMeadowCImpervious98.00Soil group total in acresCMeadowSoil group total in acresCMeadowSoil groupCTurfSoil groupCTurfCImpervious<	DLF 19/22/2023 res mi <u>Cn" x Area acres</u> 3.92 14.03 7.48
Present POI 2 Ex imp credit 0.80 Discharge to Property Line .awn x 1.00 Location Site Watershed Area 0.41 ac Runoff curve number Cn Cover Description "Cn" Area " Soil name Cover Description "Cn" Area " soil group A Impervious 98.00	res mi <u>Cn" x Area</u> acres <u>3.92</u> 14.03
Ex imp credit0.80Discharge toProperty Line.awn x1.00LocationSiteWatershed Area0.41acRunoff curve number Cn0.0006sqSoil nameCover Description"Cn"Area"acressoil group total in acresAImpervious98.00_AImpervious98.00Soil group total in acresAMeadow30.00BImpervious98.00Soil group total in acresBMeadow58.000.41BWoods55.000.14_Soil group total in acresCImpervious98.00Soil group total in acresCImpervious98.00CImpervious98.00Soil group total in acresCMeadow71.00	mi <u>Cn" x Area</u> <u>acres</u> <u>3.92</u> 14.03
Ex imp credit0.80Discharge toProperty LineLawn x1.00LocationSiteWatershed Area0.41acRunoff curve number Cn0.0006sqSoil nameCover Description"Cn"AImpervious98.00soil groupATurftotal in acresAMeadowBImpervious98.00soil groupBTurffor acresACover Description0.000cover Description1cover Description1soil groupAfotal in acresBBImperviousSoil groupBtotal in acresBCImperviousSoil groupCCImperviousSoil groupCCImperviousSoil groupCCImperviousSoil groupCCMeadowfotal in acresCCMeadowfotal in acresCCMeadowSoil groupCCMeadowfotal in acresCCMeadowfotal in acresCCMeadowfotal in acresCCMeadowfotal in acresCCMeadowfotal in acresCCMeadowfotal in acresCCMeadowfotal in acresC <td>mi <u>Cn" x Area</u> <u>acres</u> <u>3.92</u> 14.03</td>	mi <u>Cn" x Area</u> <u>acres</u> <u>3.92</u> 14.03
Lawn x1.00LocationSiteRunoff curve number CnWatershed Area0.41acSoil nameCover Description"Cn"Area"Soil nameCover Description"Cn"Area"acresAImpervious98.00	mi <u>Cn" x Area</u> <u>acres</u> <u>3.92</u> 14.03
Runoff curve number CnWatershed Area0.41acSoil nameCover Description"Cn"Area"Soil group total in acresAImpervious98.00AMeadow30.00AMeadow30.00AMeadow30.00BImpervious98.00soil group total in acresBImpervious98.00BMeadow50.00soil group total in acresBMeadowSoil group total in acresBMeadowSoil group total in acresCImperviousSoil group total in acresCImperviousSoil group total in acresCImperviousSoil group total in acresCMeadowSoil group total in acresCMeadowCImpervious98.00Soil group total in acresCMeadowCMeadow71.00	mi <u>Cn" x Area</u> <u>acres</u> <u>3.92</u> 14.03
Runoff curve number Cn0.0006sqSoil nameCover Description"Cn"Area"acresSoil group total in acresAImpervious98.00	mi <u>Cn" x Area</u> <u>acres</u> <u>3.92</u> 14.03
Soil nameCover Description"Cn"Area"acressoil group total in acresAImpervious98.00	Cn" x Area acres 3.92 14.03
acressoil group total in acresAImpervious98.00ImperviousATurf39.00Impervious30.00ImperviousAMeadow30.00Impervious30.00ImperviousSoil group total in acresBImpervious98.000.04BTurf61.000.23Impervious0.41BWoods55.000.14CImpervious98.00Impervious1mpervioussoil group total in acresCTurf74.00ImperviousSoil group total in acresCMeadow71.00Impervious	acres 3.92 14.03
acressoil group total in acresAImpervious98.00ImperviousATurf39.00Impervious30.00ImperviousAMeadow30.00Impervious0.04ImperviousSoil group total in acresBImpervious98.000.04BTurf61.000.23Impervious0.41BWoods55.000.14CImpervious98.00Impervious1mpervioussoil group total in acresCTurf74.00ImperviousSoil group total in acresCMeadow71.00Impervious	acres 3.92 14.03
soil group total in acres A Turf 39.00 Impervious A Meadow 30.00 Impervious 30.00 Impervious Impervious	14.03
total in acresAMeadow30.00AWoods30.000.04BImpervious98.000.04soil groupBTurf61.000.23total in acresBMeadow58.000.140.41BWoods55.000.14CImpervious98.000.14soil groupCTurf74.00total in acresCMeadow71.00	14.03
A Woods 30.00 Impervious 98.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.03 0.04	14.03
B Impervious 98.00 0.04 soil group total in acres B Turf 61.00 0.23 0.41 B Woods 58.00 0.14 C Impervious 98.00 0.14 soil group total in acres C Turf 74.00 C Meadow 71.00 0	14.03
soil group total in acresBTurf61.000.230.41BMeadow58.000.14CImpervious98.000.14soil group total in acresCTurf74.00	14.03
total in acresBMeadow58.000.41BWoods55.000.14CImpervious98.0055.000.14soil groupCTurf74.0074.00total in acresCMeadow71.00100	
0.41 B Woods 55.00 0.14 C Impervious 98.00 soil group C Turf 74.00 total in acres C Meadow 71.00	7.48
CImpervious98.00soil groupCTurf74.00total in acresCMeadow71.00	7.48
soil groupCTurf74.00total in acresCMeadow71.00	
total in acres C Meadow 71.00	
C Woods 70.00	
D Impervious 98.00	
soil group D Turf 80.00	
total in acres D Meadow 78.00	
D Woods 77.00	
Total 0.41	25.43
	pervious
Runoff Volumes Storm Rainfall Runoff Volume	
<u>yr in in cf</u> MDE 0.30 440	
1 2.71 0.31 453 2 3.26 0.53 784	
5 4.11 0.96 1412	
10 4.81 1.37 2012	
25 5.83 2.03 2989	
50 6.70 2.64 3896	
100 7.63 3.34 4924	
100 1.05 5.54 4524	

	WOR	KSHEET: 2 I	Runoff curve	e number and ru	Inoff	
Project	2084 Brilla LL	С			B	y: DLF
ocation:	Bensalem Tov	vnship			Date	e: 09/22/2023
_		-				
Condition	Present		POI	2		
Ex imp credit	1.00		Discharge to			
_awn x	1.00		Location	Offsite		
				Watershed Area	1.52	acres
Runoff curve	e number Cn				0.0024	sq mi
	Soil name	Cover D	Description	"Cn"	Area	"Cn" x Area
		-1 -	I	-! -	acres	acres
	A	Impervious		98.00		
soil group	A	Turf		39.00		
total in acres	A	Meadow		30.00		
	A	Woods		30.00		
	В	Impervious		98.00	0.32	31.36
soil group	В	Turf		61.00	1.09	66.49
total in acres	В	Meadow		58.00	0.11	
1.52	В	Woods		55.00	0.11	6.05
soil group	C C	Impervious Turf		98.00		
total in acres	C C	Meadow		74.00		
iolai in acres	C C	Woods		70.00		
	D	Impervious		98.00		
soil group	D	Turf		80.00		
total in acres	D	Meadow		78.00		
	D	Woods		77.00		
		•		Total	1.52	103.90
			Cr	n= 68.36	21.05%	Impervious
	Runoff Volum					
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		0.23	1277		
	EISA	0.74	0.23	1277		
	1	2.71	0.50	2738		
	2	3.26	0.78	4317		
	5	4.11	1.30	7159		
	10	4.81	1.77	9777		
	25 50	5.83 6.70	2.52 3.20	13919 17682		
	50 100	7.63	3.20 3.97	21881		

	WOF	RKSHEET: 2 R	unoff curve	e number and ru	Inoff	
Project	2084 Brilla LL					y:DLF
Location:	Bensalem Tov	wnship			Date	e: 09/22/2023
Condition	Developed	7	POI	2		
Ex imp credit	1.00	4	Discharge to	Zeepage Bed		
•			•	Seepage bed Site		
Lawn x	1.05		Location		0.00	
Dun off our w				Watershed Area	0.09	acres
Runoff curve	e number Cn				0.0001	sq mi
	Soil name	Cover D	escription	"Cn"	Area	"Cn" x Area
					acres	acres
	A	Impervious		98.00		
soil group	A	Turf		40.95		
total in acres	Α	Meadow		30.00		
	A	Woods		30.00		
.,	В	Impervious		98.00	0.07	6.86
soil group total in acres	В	Turf		64.05	0.02	1.28
	В	Meadow		58.00		
0.09	В	Woods		55.00		
	С	Impervious		98.00		
soil group	С	Turf		77.70		
total in acres	C C	Meadow Woods		71.00		
	D	Impervious		70.00 98.00		
soil group	D	Turf		84.00		
total in acres	D	Meadow		78.00		
lolar in acres	D	Woods		77.00		
		100003		Total	0.09	8.14
Post Developm	ent multiplier	1.05	0			
	Due off Malassa		Cn	= 90.46	77.78%	Impervious
	Runoff Volum		Duraff	Volume		
	Storm	Rainfall in	Runoff	Volume cf		
	yı MDE	111	in 0.05	17		
	EISA		0.05	17		
	1 EISA	2.71	1.76	574		
	2	3.26	2.27	740		
	2 5	3.20 4.11	3.07	1002		
	10	4.81	3.74	1222		
	25	5.83	4.73	1545		
	50	6.70	5.58	1823		
	100	7.63	6.50	2122		
	100	1.00	0.00	<u> </u>		

	WOR	KSHEET: 2 F	Runoff curve	number and ru	inoff	
Project	2084 Brilla LL	C			B	y: DLF
Location:	Bensalem Tov	vnship			Date	e: 09/22/2023
Condition	Developed	7	POI	2		
Ex imp credit	1.00	4	Discharge to	Zeepage Bed		
Lawn x	1.00		Location	Offsite		
Lawin A	1.00			Watershed Area	0.06	acres
Runoff curve	e number Cn			Watershed Area	0.0001	sq mi
	Soil name	Cover D	Description	"Cn"	Area	"Cn" x Area
		•			acres	acres
	A	Impervious		98.00		
soil group	A	Turf		39.00		
total in acres	A	Meadow		30.00		
	A	Woods		30.00		
	В			98.00		
soil group total in acres 0.06	В	Turf		61.00		
	BB	Meadow Woods		58.00 55.00	0.00	2.20
0.06	C	Impervious		98.00	0.06	3.30
soil group	C	Turf		74.00		
total in acres	C	Meadow		71.00		
	C	Woods		70.00		
	D	Impervious		98.00		
soil group	D	Turf		80.00		
total in acres	D	Meadow		78.00		
	D	Woods		77.00		
				Total	0.06	3.30
			Cn=	= 55.00		Impervious
	Runoff Volume					
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		0.41	89		
	EISA	0.74	0.41 0.12	89 27		
	1 2	2.71 3.26	0.12	27 59		
	2 5	3.20 4.11	0.27	125		
	10	4.11	0.89	193		
	25	5.83	1.42	310		
	50	6.70	1.94	422		
	100	7.63	2.53	552		

	WOR	KSHEET: 2 F	Runoff curve	number and ru	unoff	
Project	2084 Brilla LL	С			Ву	: DLF
Location:	Bensalem Tov	vnship			Date	
		-				
Condition	Developed	7	POI	2		
Ex imp credit	1.00	-	Discharge to	Bypass		
Lawn x	1.05		Location	Site		
				Watershed Area	0.20	acres
Runoff curve	e number Cn				0.0003	sq mi
	Soil name	Cover D	escription	"Cn"	Area	"Cn" x Area
					acres	acres
	A	Impervious		98.00		
soil group	A	Turf		40.95		
total in acres	A	Meadow		30.00		
	A	Woods		30.00		
	В	Impervious		98.00	0.07	6.86
soil group	В	Turf		64.05	0.13	8.33
total in acres	В	Meadow		58.00		
0.20	В	Woods		55.00		
	С	Impervious		98.00		
soil group	С	Turf		77.70		
total in acres	С	Meadow		71.00		
	С	Woods		70.00		
	D	Impervious		98.00		
soil group	D	Turf		84.00		
total in acres	D	Meadow		78.00		
	D	Woods		77.00 Total	0.20	15.19
					0.20	15.19
			Cn	= 75.93	35.00%	Impervious
	Runoff Volum	es				•
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		0.16	115		
	EISA		0.16	115		
	1	2.71	0.82	597		
	2	3.26	1.19	864		
	5	4.11	1.82	1320		
	10	4.81	2.37	1724		
	25	5.83	3.23	2343		
	50	6.70	3.98	2893		
	100	7.63	4.81	3496		

Project Location:	2084 Brilla LL Bensalem Tov				B Date	y: DLF e: 09/22/2023
Condition	Developed		POI	2		
Ex imp credit	1.00		Discharge to	Bypass		
Lawn x	1.00		Location	Offsite		
				Watershed Area	1.35	acres
Runoff curv	e number Cn				0.0021	sq mi
	Soil name	Cover D	escription	"Cn"	Area	"Cn" x Area
			•		acres	acres
	A	Impervious		98.00		
soil group	A	Turf		39.00		
total in acres	A	Meadow		30.00		
	A	Woods		30.00		
	В	Impervious		98.00	0.32	31.36
soil group	В	Turf		61.00	0.97	59.17
total in acres	В	Meadow		58.00		
1.35	В	Woods		55.00	0.06	3.30
	С	Impervious		98.00		
soil group	С	Turf		74.00		
total in acres	С	Meadow		71.00		
	С	Woods		70.00		
	D	Impervious		98.00		
soil group	D	Turf		80.00		
total in acres	D	Meadow		78.00		
	D	Woods		77.00		
impervious= 2	23 percent of are	ea of Lot 4	Cr	Total	1.35 23.70%	93.83
	Runoff Volum	es	CI	00.00	20.1070	
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		0.22	1075		
	EISA		0.22	1075		
	1	2.71	0.54	2645		
	2	3.26	0.84	4109		
	5	4.11	1.37	6720		
	10	4.81	1.86	9108		
	10	ui				
		5 83	263	12868		
	25 50	5.83 6.70	2.63 3.32	12868 16271		

	WOF	RKSHEET: 2	Runoff curve	number and ru	unoff	
Project	2084 Brilla LL	с			B	y: DLF
_ocation:	Bensalem Tov	wnship			Date	e: 09/22/2023
Condition	Developed	7	POI	1B		
	Developed 1.00					
Ex imp credit			Discharge to	Seepage Bed Site		
_awn x	1.05		Location		0.07	
D				Watershed Area	0.27	acres
Runoff curve	e number Cn				0.0004	sq mi
	Soil name	Cover	Description	"Cn"	Area	"Cn" x Area
					acres	acres
	A	Impervious		98.00		
soil group	A	Turf		40.95		
total in acres	A	Meadow		30.00		
	A	Woods		30.00		
	В	Impervious		98.00	0.26	25.48
soil group	В	Turf		64.05	0.01	0.64
total in acres	В	Meadow		58.00		
0.27	В	Woods		55.00		
.,	С	Impervious		98.00		
soil group	С	Turf		77.70		
total in acres	С	Meadow		71.00		_
	С	Woods		70.00		_
!!	D	Impervious		98.00		_
soil group	D	Turf Meadow		84.00		
total in acres	D D	Woods		78.00		
		Woods		77.00 Total	0.27	26.12
Post Developme	ent multiplier	1.05				•
	Dura off \/ alarma		Cn	= 96.74	96.30%	Impervious
	Runoff Volum		Dunaff			
	Storm	Rainfall in	Runoff in	Volume cf		
	yr MDE		0.02	17		
	EISA		0.02	17		
	1 EISA	2.71	2.34	2297		
	2	3.26	2.89	2831		
	5	4.11	3.73	3658		
	10	4.11	4.43	4340		
	25	5.83	5.44	5336		
	50	6.70	6.31	6187		
	100	7.63	7.24	7096		

	WORKSHEET: 3 Time of Co	oncentrati	on (Tc) o	r travel ti	me (Tt)	
Project Location:	2084 Brilla LLC Bensalem Township				By: Date:	DLF 09/22/2023
Circle one	Present		POI	1		
Sheet flow		r				
1		Segment ID	<u> </u>			
1 2	Surface description Manning's roughness coefficent, n	-	Grass 0.24			
2	Flow length, L	ft				
4	Two-year 24 hour rainfall, P2	inches	3.26			
5	Land slope, S	ft/ft	0.123			
6	•	minutes	5.37		Sum =	5.37
Shallow co	ncentrated flow					
		Segment ID	1	2	3	4
7	Surface description	_	UNPAVED	UNPAVED	UNPAVED	UNPAVED
8	Flow length, L (ft)		74	114		
9	Watercourse slope, S (ft/ft)		0.149	0.078		
10	Average velocity, V (ft/sec)	-	6.22	4.51		
11	Tt = L / 60 * V (min)		0.20	0.42	_	
					Sum =	0.62
	nd Pipe flow	r				
12	Segment ID	(5)	Channel 1	Pipe 1	Channel 1	Channel 2
13	channel bottom width or pipe diamet	er (ft)				
14	Flow depth (ft)	-				
15	Channel side slope left _;1	-				
16 17	Channel side slope right _:1 Cross sectional flow area, A (sf)	-				
18	Wetted perimeter, Pw (ft)	-				
19	Hydraulic radius, A/Pw (ft)					
20	Watercourse slope, S (ft/ft)	-				
21	Manning's roughness coefficent, n	ŀ	0.050			
22	Average velocity (ft/sec)		0.000			
23	Flow length, L (ft)	-				
24	Tt = L / 60 * V (min)	ľ				
	· · /	L		•	Sum =	
25	Watershed Tc	г	6.00	minutes =	0.10	hours

Project Location:	2084 Brilla LLC Bensalem Township					
Location:	Bensalem Township				By:	DLF
					Date:	09/22/2023
Circle one	Present		POI	2		
Sheet flow						
		Segment ID	1			
1	Surface description		Grass			
2	Manning's roughness coefficent, n		0.24			
3	Flow length, L	ft	65			
4	Two-year 24 hour rainfall, P2	inches	3.26			
5	Land slope, S	ft/ft	0.075		- T	
6	Tt=0.042(nL)^.8/P2^.5*S^.4	minutes	5.89		Sum = [5.89
Shallow cor	ncentrated flow					
		Segment ID	1	2	3	4
7	Surface description	-	UNPAVED	UNPAVED	UNPAVED	Paved
8	Flow length, L (ft)		61	49	97	92
9	Watercourse slope, S (ft/ft)		0.082	0.143	0.114	0.109
10	Average velocity, V (ft/sec)		4.62	6.10	5.46	6.70
11	Tt = L / 60 * V (min)		0.22	0.13	0.30	0.23
					Sum = [0.88
Channel an	d Pipe flow					
12	Segment ID]	Pipe 1	Pipe 2	Channel 2	Channel 1
17	Cross sectional flow area, A (sf)	·	1 100 1	1 100 2		
18	Wetted perimeter, Pw (ft)	·				
19	Hydraulic radius, A/Pw (ft)					
20	Watercourse slope, S (ft/ft)					
21	Manning's roughness coefficent, n		0.013	0.013	0.050	0.050
22	Average velocity (ft/sec)		-	-		
23	Flow length, L (ft)	ĺ				
24	Tt = L / 60 * V (min)					
		-			Sum =	
25	Watershed Tc	[6.77	minutes =	0.11	hours

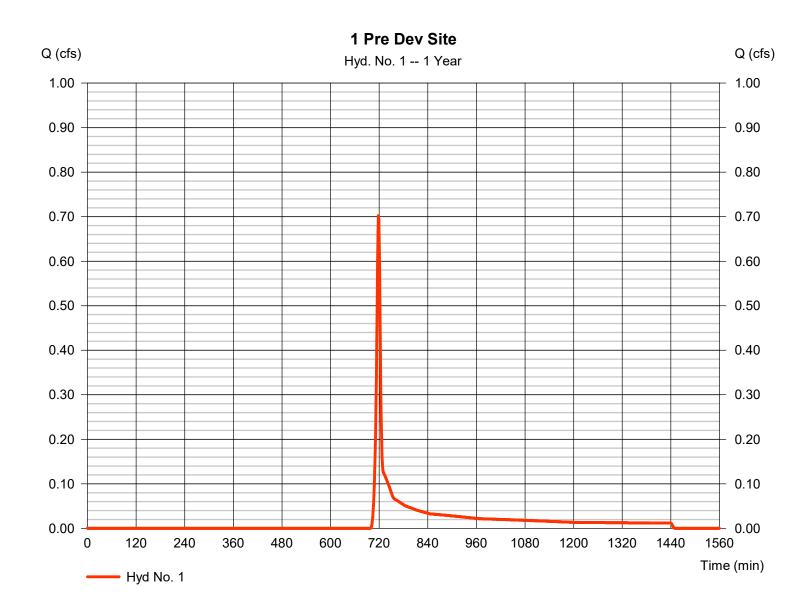
Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

25 of 293

-	Hydrograph	Inflow								Hydrograph	
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		0.702	1.146							1 Pre Dev Site
2	SCS Runoff		0.643	1.070							1 Pre Dev Off Site
3	Combine	1, 2	1.345	2.215							1 Pre Dev Total ****
4	SCS Runoff		1.094	1.456							1A Post Dev Site
5	SCS Runoff		0.616	1.045							1A Post Dev Off Site
6	Combine	4, 5	1.710	2.501							1A Post Dev Controlled Total
7	Reservoir	6	0.050	0.272							Seepage Bed 1A
8	SCS Runoff		1.044	1.270							1B Post Dev Site
9	Combine	7, 8	1.044	1.270							1B Post Dev Controlled Total
10	Reservoir	9	0.661	0.834							Seepage Bed 1B
11	SCS Runoff		0.290	0.410							1 Post Dev Site Bypass
12	SCS Runoff		0.151	0.225							1 Post Dev Off Site Bypass
13	Combine	10, 11, 12	1.044	1.401							1 Post Dev Total ****
15	SCS Runoff		0.141	0.305							2 Pre Dev Site
16	SCS Runoff		1.117	1.900							2 Pre Dev Off Site
17	Combine	15, 16	1.252	2.205							2 Pre Dev Total ****
18	SCS Runoff		0.285	0.363							2 Post Dev Site
19	SCS Runoff		0.002	0.015							2 Post Dev Off Site
20	Combine	18, 19	0.285	0.373							2 Post Dev Controlled Total
21	Reservoir	20	0.145	0.175							Seepage Bed 2
22	SCS Runoff		0.301	0.442							2 Post Dev Site Bypass
23	SCS Runoff		1.235	2.034							2 Post Dev Off Site Bypass
24	Combine	21, 22, 23	1.664	2.629							2 Post Dev Total ****
Pro	j. file: 301 W	atersheds	2084 S	CS.gpw					Fri	day, 09 /	22 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

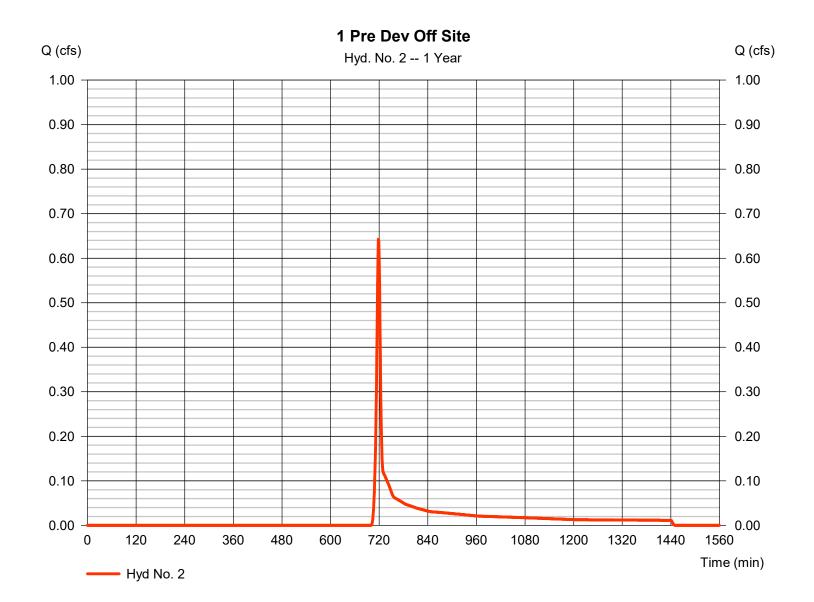

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.702	1	718	1,538				1 Pre Dev Site
2	SCS Runoff	0.643	1	718	1,433				1 Pre Dev Off Site
3	Combine	1.345	1	718	2,971	1, 2			1 Pre Dev Total ****
4	SCS Runoff	1.094	1	718	2,209				1A Post Dev Site
5	SCS Runoff	0.616	1	718	1,398				1A Post Dev Off Site
6	Combine	1.710	1	718	3,607	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.050	1	839	810	6	127.72	2,015	Seepage Bed 1A
8	SCS Runoff	1.044	1	717	2,365				1B Post Dev Site
9	Combine	1.044	1	717	3,174	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.661	1	721	1,121	9	127.49	472	Seepage Bed 1B
11	SCS Runoff	0.290	1	718	584				1 Post Dev Site Bypass
12	SCS Runoff	0.151	1	718	310				1 Post Dev Off Site Bypass
13	Combine	1.044	1	719	2,015	10, 11, 12			1 Post Dev Total ****
15	SCS Runoff	0.141	1	720	445				2 Pre Dev Site
16	SCS Runoff	1.117	1	719	2,679				2 Pre Dev Off Site
17	Combine	1.252	1	719	3,123	15, 16			2 Pre Dev Total ****
18	SCS Runoff	0.285	1	717	593				2 Post Dev Site
19	SCS Runoff	0.002	1	723	28				2 Post Dev Off Site
20	Combine	0.285	1	717	621	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.145	1	723	615	20	108.50	147	Seepage Bed 2
22	SCS Runoff	0.301	1	718	614				2 Post Dev Site Bypass
23	SCS Runoff	1.235	1	718	2,727				2 Post Dev Off Site Bypass
24	Combine	1.664	1	718	3,956	21, 22, 23			2 Post Dev Total ****
301	Watersheds	2084 SC	S.gpw		Return	Period: 1 Ye	ear	Friday, 09	/ 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

Hydrograph type	= SCS Runoff	Peak discharge	= 0.702 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 1,538 cuft
Drainage area	= 0.740 ac	Curve number	= 69.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

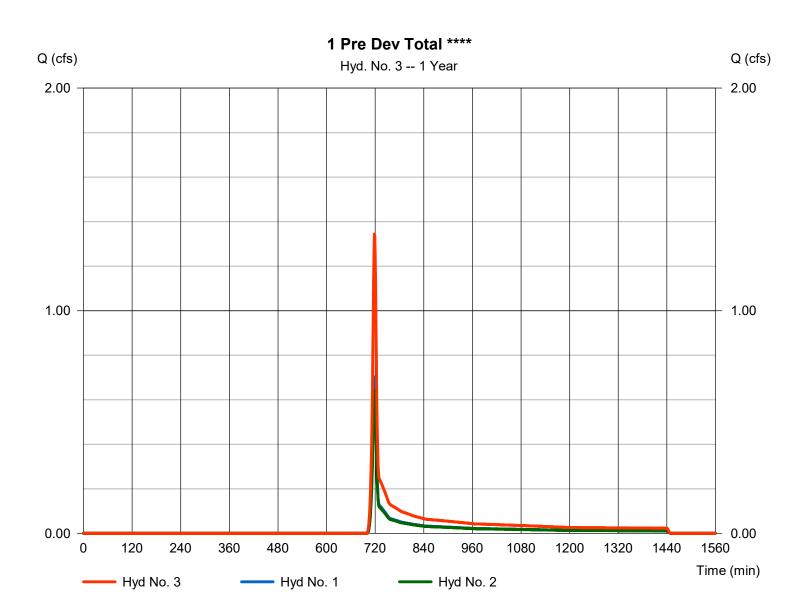


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

1 Pre Dev Off Site

Hydrograph type	= SCS Runoff	Peak discharge	= 0.643 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 1,433 cuft
Drainage area	= 0.730 ac	Curve number	= 69.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

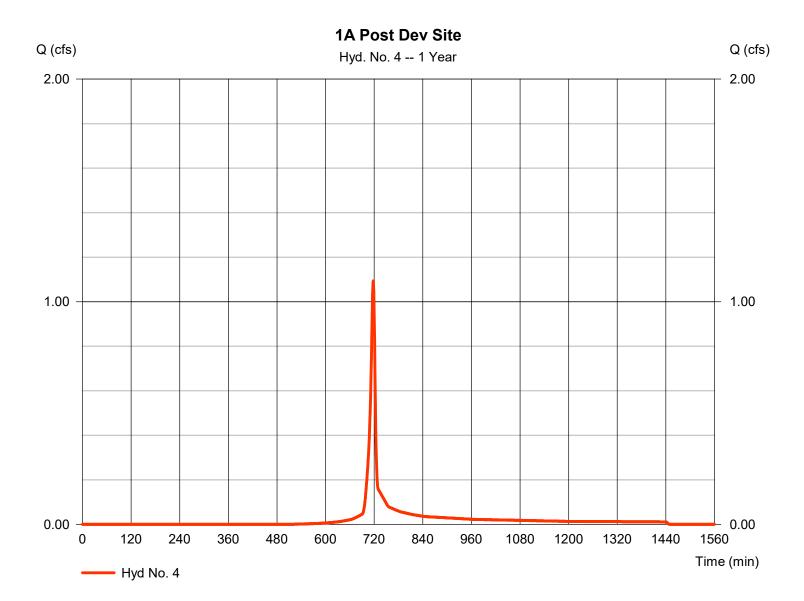


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 1.345 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 2,971 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 1.470 ac

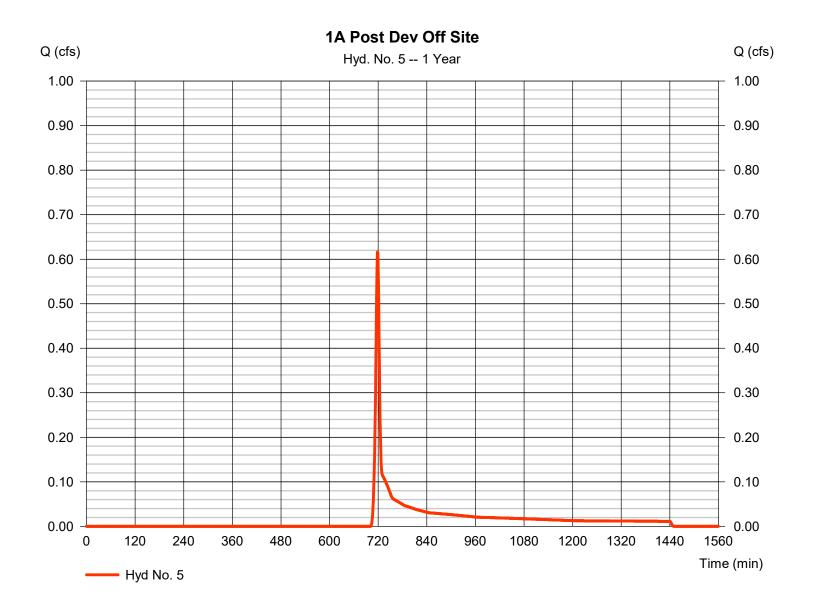


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= SCS Runoff	Peak discharge	= 1.094 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 2,209 cuft
Drainage area	= 0.440 ac	Curve number	= 84.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

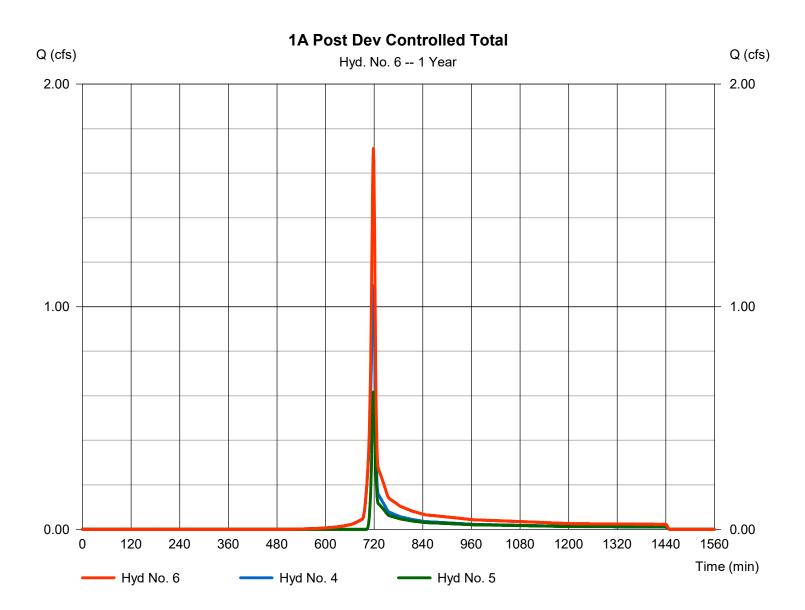


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= SCS Runoff	Peak discharge	= 0.616 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 1,398 cuft
Drainage area	= 0.750 ac	Curve number	= 68.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



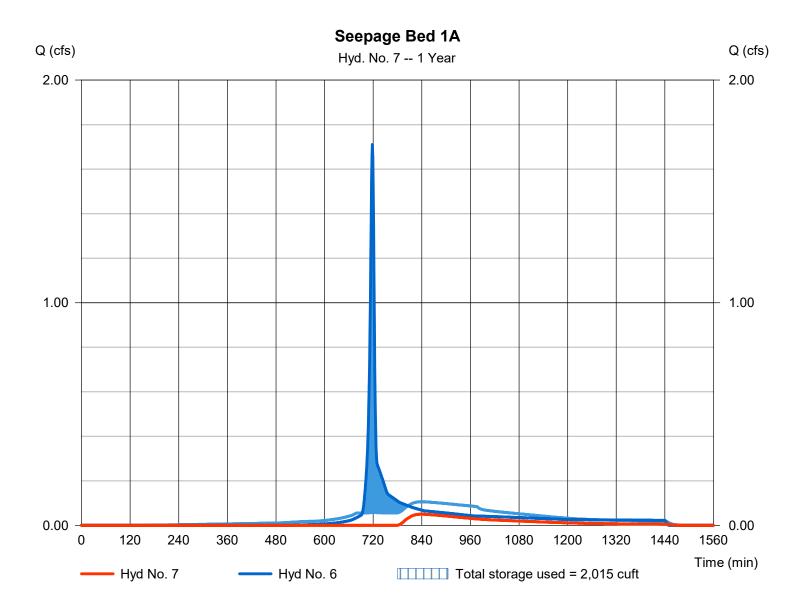
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 1.710 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 3,607 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 1.190 ac

32 of 293


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	= Reservoir	Peak discharge	= 0.050 cfs = 839 min
Storm frequency	= 1 yrs	Time to peak	= 810 cuft
Time interval	= 1 min	Hyd. volume	
Inflow hyd. No.	= 6 - 1A Post Dev Controll= Seepage Bed 1A	led Tot M ax. Elevation	= 127.72 ft
Reservoir name		Max. Storage	= 2,015 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 1 - Seepage Bed 1A

Pond Data

UG Chambers -Invert elev. = 126.25 ft, Rise x Span = 1.00×1.00 ft, Barrel Len = 72.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 126.00 ft, Width = 40.00 ft, Height = 2.00 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	t) Elevation (ft) Contour area		Incr. Storage (cuft)	Total storage (cuft)
0.00	126.00	n/a	0	0
0.20	126.20	n/a	230	230
0.40	126.40	n/a	234	464
0.60	126.60	n/a	238	702
0.80	126.80	n/a	239	941
1.00	127.00	n/a	239	1,180
1.20	127.20	n/a	236	1,416
1.40	127.40	n/a	231	1,647
1.60	127.60	n/a	230	1,878
1.80	127.80	n/a	230	2,108
2.00	128.00	n/a	230	2,338

Culvert / Orifice Structures

Weir Structures

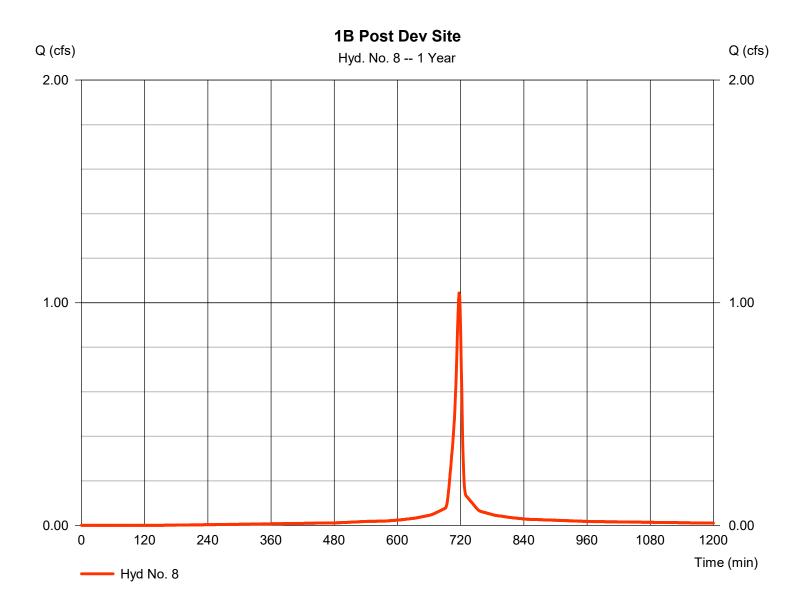
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	8.00	0.00	0.00	Crest Len (ft)	= 4.71	Inactive	Inactive	Inactive
Span (in)	= 18.00	8.00	0.00	0.00	Crest El. (ft)	= 129.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.32	3.32	3.33	3.33
Invert El. (ft)	= 126.75	127.60	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 123.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.70	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.250 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

eluge	eterage / I	sieena ge											
Stage	Storage	Elevation	Clv A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
0.00	0	126.00	0.00	0.00			0.00	0.00			0.000		0.000
0.02	23	126.02	0.00	0.00			0.00	0.00			0.017		0.017
0.04	46	126.04	0.00	0.00			0.00	0.00			0.017		0.017
0.06	69	126.06	0.00	0.00			0.00	0.00			0.017		0.017
0.08	92	126.08	0.00	0.00			0.00	0.00			0.017		0.017
0.10	115	126.10	0.00	0.00			0.00	0.00			0.017		0.017
0.12	138	126.12	0.00	0.00			0.00	0.00			0.017		0.017
0.14	161	126.14	0.00	0.00			0.00	0.00			0.017		0.017
0.16	184	126.16	0.00	0.00			0.00	0.00			0.017		0.017
0.18	207	126.18	0.00	0.00			0.00	0.00			0.017		0.017
0.20	230	126.20	0.00	0.00			0.00	0.00			0.017		0.017
0.22	254	126.22	0.00	0.00			0.00	0.00			0.017		0.017
0.24	277	126.24	0.00	0.00			0.00	0.00			0.017		0.017
0.26	301	126.26	0.00	0.00			0.00	0.00			0.017		0.017
0.28	324	126.28	0.00	0.00			0.00	0.00			0.017		0.017
0.30	347	126.30	0.00	0.00			0.00	0.00			0.017		0.017
0.32	371	126.32	0.00	0.00			0.00	0.00			0.017		0.017
0.34	394	126.34	0.00	0.00			0.00	0.00			0.017		0.017
0.36	417	126.36	0.00	0.00			0.00	0.00			0.017		0.017
0.38	441	126.38	0.00	0.00			0.00	0.00			0.017		0.017
0.40	464	126.40	0.00	0.00			0.00	0.00			0.017		0.017
0.42	488	126.42	0.00	0.00			0.00	0.00			0.017		0.017
0.44	512	126.44	0.00	0.00			0.00	0.00			0.017		0.017
0.46	535	126.46	0.00	0.00			0.00	0.00			0.017		0.017
0.48	559	126.48	0.00	0.00			0.00	0.00			0.017		0.017
0.50	583	126.50	0.00	0.00			0.00	0.00			0.017		0.017
0.52	607	126.52	0.00	0.00			0.00	0.00			0.017		0.017
0.54	631	126.54	0.00	0.00			0.00	0.00			0.017		0.017
0.56	654	126.56	0.00	0.00			0.00	0.00			0.017		0.017
0.58	678	126.58	0.00	0.00			0.00	0.00			0.017		0.017
0.60	702	126.60	0.00	0.00			0.00	0.00			0.017		0.017
0.62	726	126.62	0.00	0.00			0.00	0.00			0.017		0.017
											Continuo		t nogo

Continues on next page ...

Seepage Bed 1A Stage / Storage / Discharge Table

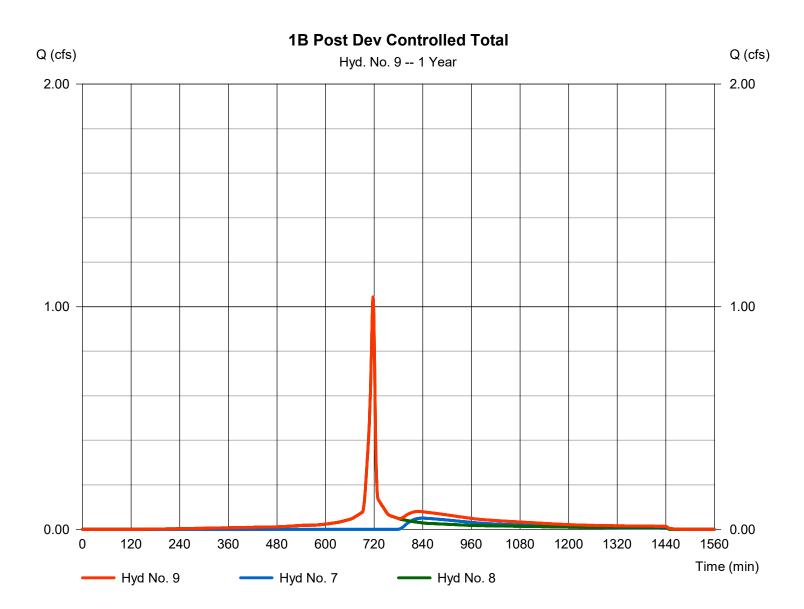

Stage /	Storage / L	Jischarge I	able										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.64	750	126.64	0.00	0.00			0.00	0.00			0.017		0.017
0.66	774	126.66	0.00	0.00			0.00	0.00			0.017		0.017
0.68	798	126.68	0.00	0.00			0.00	0.00			0.017		0.017
0.70	821	126.70	0.00	0.00			0.00	0.00			0.017		0.017
0.72	845	126.72	0.00	0.00			0.00	0.00			0.017		0.017
0.74	869	126.74	0.00	0.00			0.00	0.00			0.017		0.017
0.76	893	126.76	0.00	0.00			0.00	0.00			0.017		0.017
0.78	917	126.78	0.00	0.00			0.00	0.00			0.017		0.017
0.80	941	126.80	0.00	0.00			0.00	0.00			0.017		0.017
0.82	965	126.82	0.00	0.00			0.00	0.00			0.017		0.017
0.84	989	126.84	0.00	0.00			0.00	0.00			0.017		0.017
0.86	1,012	126.86	0.00	0.00			0.00	0.00			0.017		0.017
0.88 0.90	1,036 1,060	126.88 126.90	0.00 0.00	0.00 0.00			0.00 0.00	0.00 0.00			0.017 0.017		0.017 0.017
0.90	1,080	126.90	0.00	0.00			0.00	0.00			0.017		0.017
0.92	1,084	126.92	0.00	0.00			0.00	0.00			0.017		0.017
0.96	1,132	126.96	0.00	0.00			0.00	0.00			0.017		0.017
0.98	1,156	126.98	0.00	0.00			0.00	0.00			0.017		0.017
1.00	1,180	127.00	0.00	0.00			0.00	0.00			0.017		0.017
1.02	1,203	127.02	0.00	0.00			0.00	0.00			0.018		0.018
1.04	1,227	127.04	0.00	0.00			0.00	0.00			0.018		0.018
1.06	1,250	127.06	0.00	0.00			0.00	0.00			0.018		0.018
1.08	1,274	127.08	0.00	0.00			0.00	0.00			0.018		0.018
1.10	1,298	127.10	0.00	0.00			0.00	0.00			0.018		0.018
1.12	1,321	127.12	0.00	0.00			0.00	0.00			0.018		0.018
1.14	1,345	127.14	0.00	0.00			0.00	0.00			0.018		0.018
1.16	1,369	127.16	0.00	0.00			0.00	0.00			0.018		0.018
1.18	1,392	127.18	0.00	0.00			0.00	0.00			0.018		0.018
1.20	1,416	127.20	0.00	0.00			0.00	0.00			0.018		0.018
1.22	1,439	127.22	0.00	0.00			0.00	0.00			0.018		0.018
1.24	1,462	127.24	0.00	0.00			0.00	0.00			0.018		0.018
1.26	1,485	127.26	0.00	0.00			0.00	0.00			0.018		0.018
1.28	1,508	127.28	0.00	0.00			0.00	0.00			0.018		0.018
1.30	1,532	127.30	0.00	0.00			0.00	0.00			0.018		0.018
1.32 1.34	1,555 1,578	127.32 127.34	0.00 0.00	0.00 0.00			0.00 0.00	0.00 0.00			0.018 0.018		0.018 0.018
1.34	1,601	127.34	0.00	0.00			0.00	0.00			0.018		0.018
1.30	1,624	127.38	0.00	0.00			0.00	0.00			0.018		0.018
1.40	1,647	127.40	0.00	0.00			0.00	0.00			0.018		0.018
1.42	1,670	127.42	0.00	0.00			0.00	0.00			0.018		0.018
1.44	1,693	127.44	0.00	0.00			0.00	0.00			0.018		0.018
1.46	1,716	127.46	0.00	0.00			0.00	0.00			0.018		0.018
1.48	1,739	127.48	0.00	0.00			0.00	0.00			0.018		0.018
1.50	1,762	127.50	0.00	0.00			0.00	0.00			0.018		0.018
1.52	1,785	127.52	0.00	0.00			0.00	0.00			0.018		0.018
1.54	1,808	127.54	0.00	0.00			0.00	0.00			0.018		0.018
1.56	1,831	127.56	0.00	0.00			0.00	0.00			0.018		0.018
1.58	1,854	127.58	0.00	0.00			0.00	0.00			0.018		0.018
1.60	1,878	127.60	0.00	0.00			0.00	0.00			0.018		0.018
1.62	1,901	127.62	0.00 ic	0.00 ic			0.00	0.00			0.018		0.020
1.64	1,924	127.64	0.01 ic	0.01 ic			0.00	0.00			0.018		0.024
1.66	1,947	127.66	0.01 ic	0.01 ic			0.00	0.00			0.018		0.031
1.68	1,970	127.68	0.03 ic	0.02 ic			0.00	0.00			0.018		0.042
1.70 1.72	1,993	127.70 127.72	0.04 ic 0.05 ic	0.04 ic 0.05 ic			0.00 0.00	0.00 0.00			0.018 0.018		0.054 0.069
1.72	2,016 2,039	127.72	0.05 ic 0.07 ic	0.05 ic 0.07 ic			0.00	0.00			0.018		0.089
1.74	2,059	127.74	0.07 ic 0.09 ic	0.07 ic 0.09 ic			0.00	0.00			0.018		0.109
1.78	2,085	127.78	0.00 ic 0.12 ic	0.00 ic 0.11 ic			0.00	0.00			0.018		0.130
1.80	2,108	127.80	0.12 ic	0.13 ic			0.00	0.00			0.018		0.153
1.82	2,131	127.82	0.17 ic	0.16 ic			0.00	0.00			0.018		0.179
1.84	2,154	127.84	0.20 ic	0.19 ic			0.00	0.00			0.018		0.207
1.86	2,177	127.86	0.22 ic	0.22 ic			0.00	0.00			0.018		0.238
1.88	2,200	127.88	0.25 ic	0.25 ic			0.00	0.00			0.018		0.270
1.90	2,223	127.90	0.29 ic	0.29 ic			0.00	0.00			0.018		0.305
1.92	2,246	127.92	0.33 ic	0.32 ic			0.00	0.00			0.018		0.341
1.94	2,269	127.94	0.36 ic	0.36 ic			0.00	0.00			0.018		0.379
1.96	2,292	127.96	0.41 ic	0.40 ic			0.00	0.00			0.018		0.417
1.98	2,315	127.98	0.43 ic	0.43 ic			0.00	0.00			0.018		0.450
2.00	2,338	128.00	0.49 ic	0.47 ic			0.00	0.00			0.018		0.491

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= SCS Runoff	Peak discharge	= 1.044 cfs
Storm frequency	= 1 yrs	Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 2,365 cuft
Drainage area	= 0.270 ac	Curve number	= 96.7
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



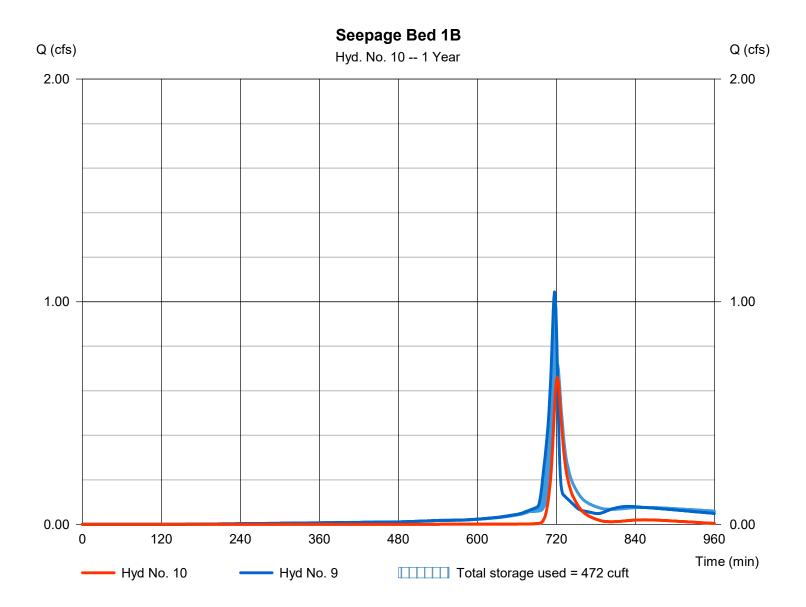
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 1.044 cfs
Storm frequency	= 1 yrs	Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 3,174 cuft
Inflow hyds.	= 7, 8	Contrib. drain. area	= 0.270 ac

37 of 293


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 1 yrs 1 min 9 - 1B Post Dev Controlled To 		= 0.661 cfs = 721 min = 1,121 cuft = 127.49 ft
Reservoir name	= Seepage Bed 1B	Max. Storage	= 472 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 2 - Seepage Bed 1B

Pond Data

UG Chambers -Invert elev. = 127.50 ft, Rise x Span = 1.00×1.00 ft, Barrel Len = 96.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 127.00 ft, Width = 25.00 ft, Height = 2.00 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)) Elevation (ft) Contour area		Incr. Storage (cuft)	Total storage (cuft)
0.00	127.00	n/a	0	0
0.20	127.20	n/a	192	192
0.40	127.40	n/a	192	384
0.60	127.60	n/a	194	578
0.80	127.80	n/a	201	780
1.00	128.00	n/a	203	983
1.20	128.20	n/a	203	1,186
1.40	128.40	n/a	201	1,387
1.60	128.60	n/a	194	1,582
1.80	128.80	n/a	192	1,774
2.00	129.00	n/a	192	1,966

Culvert / Orifice Structures

Weir Structures [PrfRsr] [A]

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	8.00	0.00	0.00	Crest Len (ft)	= 3.14	Inactive	Inactive	Inactive
Span (in)	= 18.00	8.00	0.00	0.00	Crest El. (ft)	= 129.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.32	3.32	3.33	3.33
Invert El. (ft)	= 126.40	127.00	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 24.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 5.24	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 1.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

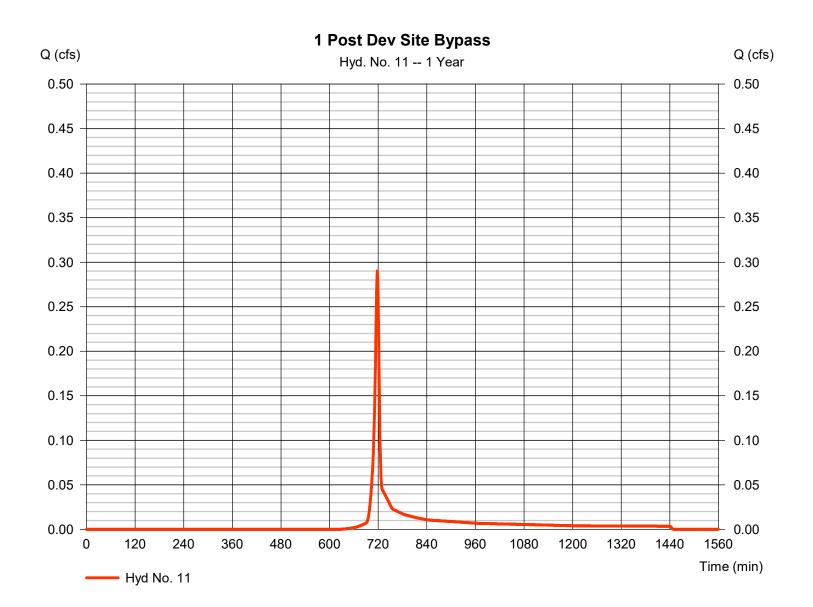
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

etage,	eterage / -	sieena ge											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	127.00	0.00	0.00			0.00	0.00			0.000		0.000
0.02	19	127.02	1.78 ic	0.00 ic			0.00	0.00			0.056		0.057
0.04	38	127.04	1.78 ic	0.01 ic			0.00	0.00			0.056		0.062
0.06	58	127.06	1.78 ic	0.01 ic			0.00	0.00			0.056		0.069
0.08	77	127.08	1.78 ic	0.02 ic			0.00	0.00			0.056		0.080
0.10	96	127.10	1.78 ic	0.04 ic			0.00	0.00			0.056		0.092
0.12	115	127.12	1.78 ic	0.05 ic			0.00	0.00			0.056		0.107
0.14	134	127.14	1.78 ic	0.07 ic			0.00	0.00			0.056		0.125
0.16	154	127.16	1.78 ic	0.09 ic			0.00	0.00			0.056		0.147
0.18	173	127.18	1.78 ic	0.11 ic			0.00	0.00			0.056		0.168
0.20	192	127.20	1.78 ic	0.13 ic			0.00	0.00			0.056		0.191
0.22	211	127.22	1.78 ic	0.16 ic			0.00	0.00			0.057		0.217
0.24	230	127.24	1.78 ic	0.19 ic			0.00	0.00			0.057		0.246
0.26	250	127.26	1.78 ic	0.22 ic			0.00	0.00			0.057		0.276
0.28	269	127.28	1.78 ic	0.25 ic			0.00	0.00			0.057		0.309
0.30	288	127.30	1.78 ic	0.29 ic			0.00	0.00			0.057		0.343
0.32	307	127.32	1.78 ic	0.32 ic			0.00	0.00			0.057		0.380
0.34	326	127.34	1.78 ic	0.36 ic			0.00	0.00			0.057		0.417
0.36	346	127.36	1.78 ic	0.40 ic			0.00	0.00			0.057		0.456
0.38	365	127.38	1.78 ic	0.43 ic			0.00	0.00			0.057		0.489
0.40	384	127.40	1.78 ic	0.47 ic			0.00	0.00			0.057		0.530
0.42	404	127.42	1.78 ic	0.51 ic			0.00	0.00			0.057		0.570
0.44	423	127.44	1.78 ic	0.55 ic			0.00	0.00			0.058		0.611
0.46	442	127.46	1.78 ic	0.59 ic			0.00	0.00			0.058		0.652
0.48	462	127.48	1.78 ic	0.64 ic			0.00	0.00			0.058		0.699
0.50	481	127.50	1.78 ic	0.68 ic			0.00	0.00			0.058		0.738
0.52	501	127.52	1.78 ic	0.72 ic			0.00	0.00			0.058		0.776
0.54	520	127.54	1.78 ic	0.76 ic			0.00	0.00			0.058		0.818
0.56	540	127.56	1.78 ic	0.80 ic			0.00	0.00			0.058		0.857
0.58	559	127.58	1.78 ic	0.84 ic			0.00	0.00			0.058		0.898
0.60	578	127.60	1.78 ic	0.88 ic			0.00	0.00			0.058		0.934
0.62	599	127.62	1.78 ic	0.91 ic			0.00	0.00			0.058		0.966
											Continuo		thorac

Continues on next page ...

40 of 293

Seepage Bed 1B Stage / Storage / Discharge Table

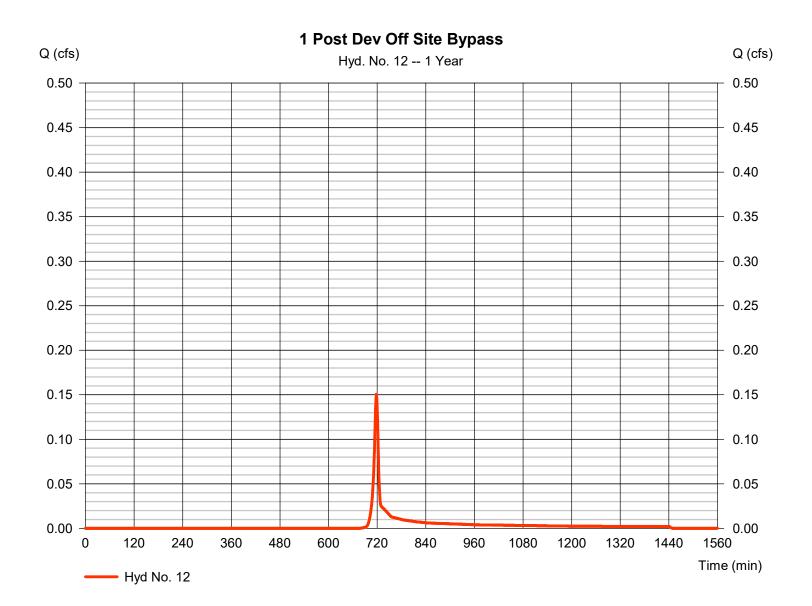

Slaye	Slorage /	Discharge	lable										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.64	619	127.64	1.78 ic	0.94 ic			0.00	0.00			0.058		0.997
0.66	639	127.66	1.78 ic	0.94 ic			0.00	0.00			0.058		1.023
0.68	659	127.68	1.78 ic	0.99 ic			0.00	0.00			0.059		1.048
0.70	679	127.70	1.78 ic	1.02 ic			0.00	0.00			0.059		1.076
0.72	699	127.72	1.78 ic	1.04 ic			0.00	0.00			0.059		1.104
0.74	719	127.74	1.78 ic	1.07 ic			0.00	0.00			0.059		1.131
0.76	739	127.76	1.78 ic	1.10 ic			0.00	0.00			0.059		1.157
0.78	759	127.78	1.78 ic	1.12 ic			0.00	0.00			0.059		1.182
0.80	780	127.80	1.78 ic	1.15 ic			0.00	0.00			0.059		1.207
0.82	800	127.82	1.78 ic	1.17 ic 1.20 ic			0.00 0.00	0.00 0.00			0.059		1.232
0.84 0.86	820 841	127.84 127.86	1.78 ic 1.78 ic	1.20 lc 1.22 ic			0.00	0.00			0.059 0.059		1.255 1.279
0.88	861	127.88	1.78 ic	1.22 ic 1.24 ic			0.00	0.00			0.059		1.302
0.90	881	127.90	1.78 ic	1.27 ic			0.00	0.00			0.060		1.325
0.92	902		1.78 ic	1.29 ic			0.00	0.00			0.060		1.347
0.94	922		1.78 ic	1.31 ic			0.00	0.00			0.060		1.369
0.96	942		1.78 ic	1.33 ic			0.00	0.00			0.060		1.390
0.98	962		1.78 ic	1.35 ic			0.00	0.00			0.060		1.411
1.00	983	128.00	1.78 ic	1.37 ic			0.00	0.00			0.060		1.432
1.02	1,003	128.02	1.78 ic	1.39 ic			0.00	0.00			0.060		1.453
1.04	1,023	128.04	1.78 ic	1.41 ic			0.00	0.00			0.060		1.473
1.06	1,044	128.06	1.78 ic	1.43 ic			0.00	0.00			0.060		1.493
1.08	1,064	128.08	1.78 ic	1.45 ic			0.00	0.00			0.060		1.513
1.10	1,084	128.10	1.78 ic	1.47 ic			0.00	0.00			0.060		1.532
1.12	1,105	128.12	1.78 ic	1.49 ic			0.00	0.00			0.061		1.551
1.14	1,125	128.14	1.78 ic	1.51 ic			0.00	0.00			0.061		1.570
1.16	1,145	128.16	1.78 ic	1.53 ic			0.00	0.00			0.061		1.589
1.18	1,166	128.18	1.78 ic	1.55 ic			0.00	0.00			0.061		1.607
1.20 1.22	1,186 1,206	128.20 128.22	1.78 ic 1.78 ic	1.56 ic 1.58 ic			0.00 0.00	0.00 0.00			0.061 0.061		1.625 1.643
1.22	1,200	128.22	1.78 ic	1.60 ic			0.00	0.00			0.061		1.661
1.24	1,220	128.24	1.78 ic	1.62 ic			0.00	0.00			0.001		1.679
1.20	1,240	128.28	1.78 ic	1.64 ic			0.00	0.00			0.061		1.696
1.30	1,287	128.30	1.78 ic	1.65 ic			0.00	0.00			0.061		1.714
1.32	1,307	128.32	1.78 ic	1.67 ic			0.00	0.00			0.061		1.731
1.34	1,327	128.34	1.78 ic	1.69 ic			0.00	0.00			0.062		1.748
1.36	1,347	128.36	1.78 ic	1.70 ic			0.00	0.00			0.062		1.764
1.38	1,367	128.38	1.78 ic	1.72 ic			0.00	0.00			0.062		1.781
1.40	1,387	128.40	1.78 ic	1.74 ic			0.00	0.00			0.062		1.797
1.42	1,407	128.42	1.78 ic	1.75 ic			0.00	0.00			0.062		1.814
1.44	1,426	128.44	1.78 ic	1.77 ic			0.00	0.00			0.062		1.830
1.46	1,445	128.46	1.78 ic	1.78 ic			0.00	0.00			0.062		1.846
1.48	1,465	128.48	1.84 ic	1.80 ic			0.00	0.00			0.062		1.862
1.50	1,484	128.50	1.84 ic	1.82 ic			0.00	0.00			0.062		1.877
1.52	1,504	128.52	1.84 ic	1.83 ic			0.00	0.00			0.062		1.893
1.54	1,523	128.54	1.85 ic	1.85 ic			0.00	0.00			0.062		1.908
1.56	1,543	128.56	1.90 ic	1.86 ic			0.00	0.00			0.062		1.924
1.58 1.60	1,562 1,582	128.58 128.60	1.90 ic 1.90 ic	1.88 ic 1.89 ic			0.00 0.00	0.00 0.00			0.063 0.063		1.939 1.954
1.62	1,601	128.62	1.90 lc	1.09 lc			0.00	0.00			0.063		1.954
1.64	1,620	128.64	1.97 ic	1.92 ic			0.00	0.00			0.063		1.984
1.66	1,639	128.66	1.97 ic	1.94 ic			0.00	0.00			0.063		1.999
1.68	1,658	128.68	1.97 ic	1.95 ic			0.00	0.00			0.063		2.013
1.70	1,678	128.70	1.97 ic	1.96 ic			0.00	0.00			0.063		2.028
1.72	1,697	128.72	1.98 ic	1.98 ic			0.00	0.00			0.063		2.042
1.74	1,716	128.74	2.03 ic	1.99 ic			0.00	0.00			0.063		2.056
1.76	1,735	128.76	2.03 ic	2.01 ic			0.00	0.00			0.063		2.071
1.78	1,754	128.78	2.03 ic	2.02 ic			0.00	0.00			0.063		2.085
1.80	1,774	128.80	2.04 ic	2.04 ic			0.00	0.00			0.064		2.099
1.82	1,793	128.82	2.10 ic	2.05 ic			0.00	0.00			0.064		2.113
1.84	1,812	128.84	2.10 ic	2.06 ic			0.00	0.00			0.064		2.127
1.86	1,831	128.86	2.10 ic	2.08 ic			0.00	0.00			0.064		2.140
1.88	1,850	128.88	2.10 ic	2.09 ic			0.00	0.00			0.064		2.154
1.90	1,870	128.90	2.10 ic	2.10 ic			0.00	0.00			0.064		2.167
1.92	1,889	128.92	2.16 ic	2.12 ic			0.00	0.00			0.064		2.181
1.94	1,908	128.94	2.16 ic	2.13 ic			0.00	0.00			0.064		2.194
1.96	1,927	128.96	2.16 ic	2.14 ic			0.00	0.00			0.064		2.208
1.98 2.00	1,946 1,966	128.98 129.00	2.16 ic 2.17 ic	2.16 ic 2.17 ic			0.00 0.00	0.00 0.00			0.064 0.064		2.221 2.234
2.00	1,500	120.00	2.1710	2.17 10	-		0.00	0.00			0.004	-	2.204

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.290 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 584 cuft
Drainage area	= 0.160 ac	Curve number	= 78.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

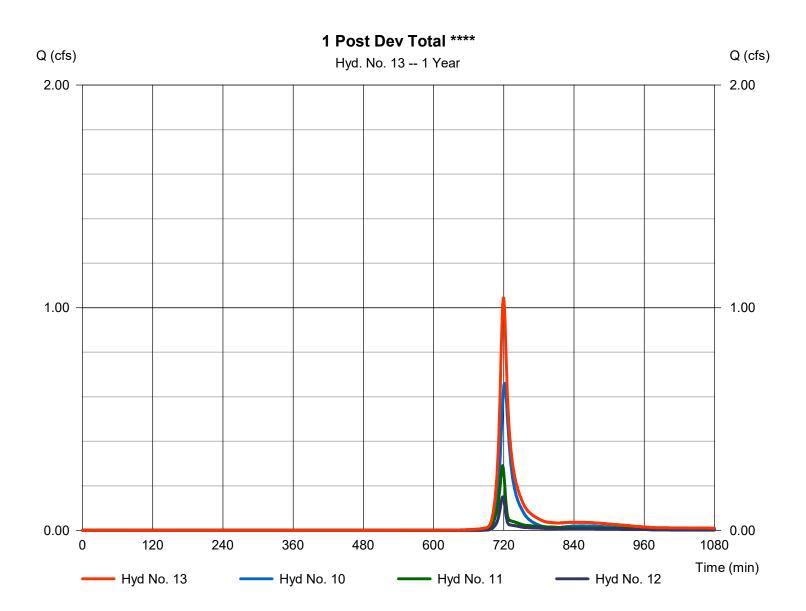

41 of 293

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.151 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 310 cuft
Drainage area	= 0.110 ac	Curve number	= 74.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

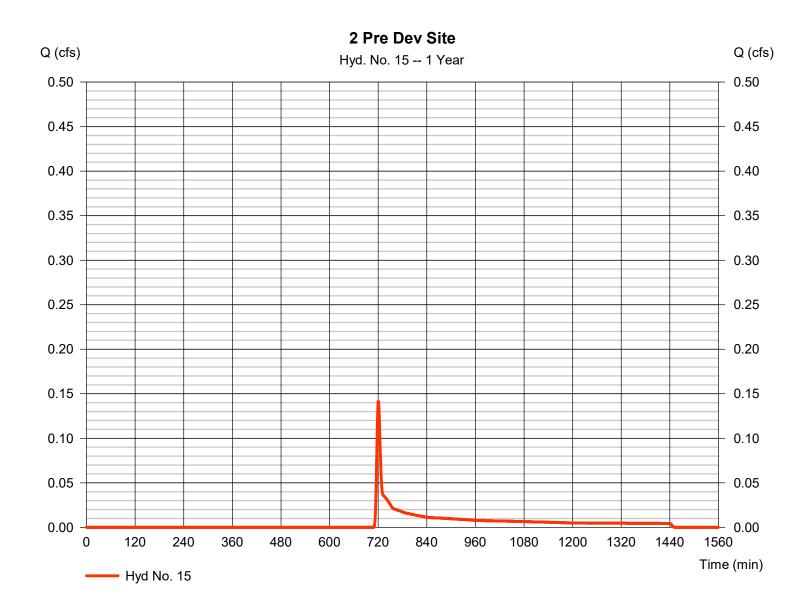


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 1.044 cfs
Storm frequency	= 1 yrs	Time to peak	= 719 min
Time interval	= 1 min	Hyd. volume	= 2,015 cuft
Inflow hyds.	= 10, 11, 12	Contrib. drain. area	= 0.270 ac

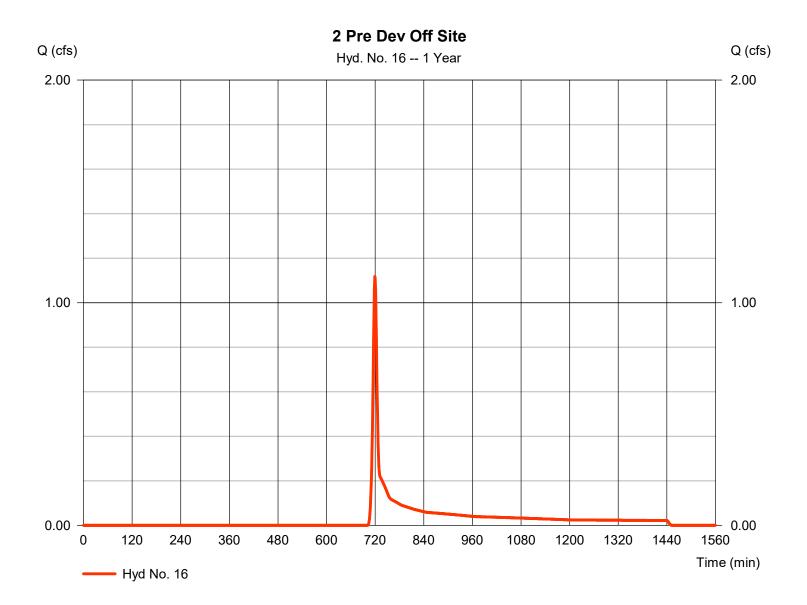

43 of 293

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= SCS Runoff	Peak discharge	= 0.141 cfs
Storm frequency	= 1 yrs	Time to peak	= 720 min
Time interval	= 1 min	Hyd. volume	= 445 cuft
Drainage area	= 0.410 ac	Curve number	= 62.6
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

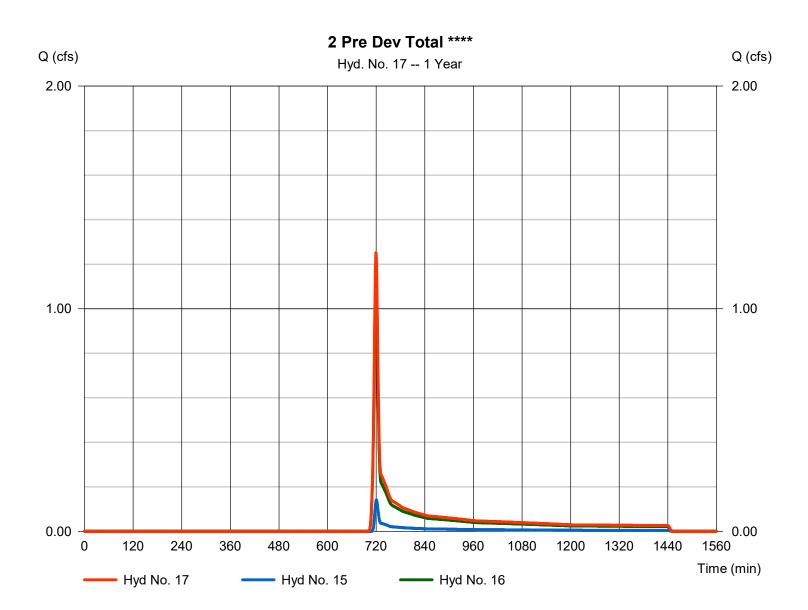


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

Hydrograph type	= SCS Runoff	Peak discharge	= 1.117 cfs
Storm frequency	= 1 yrs	Time to peak	= 719 min
Time interval	= 1 min	Hyd. volume	= 2,679 cuft
Drainage area	= 1.520 ac	Curve number	= 68.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

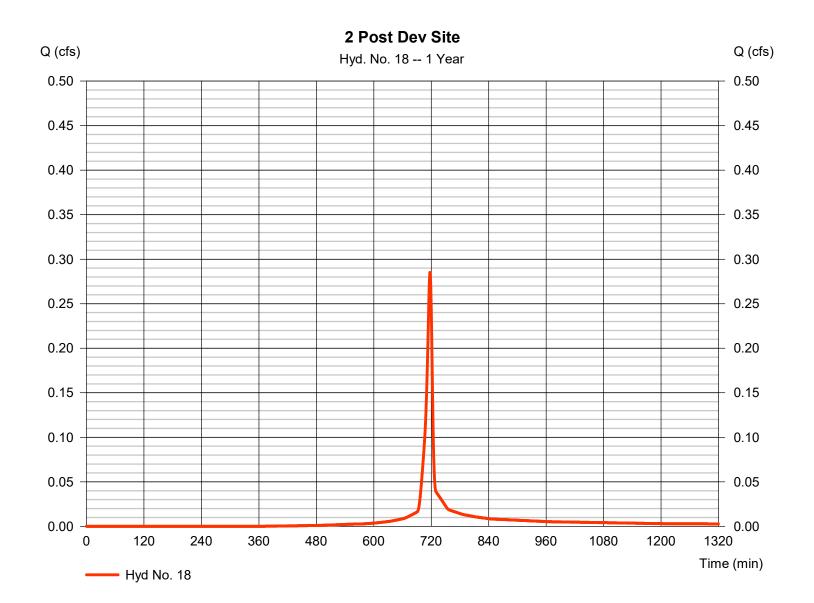

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 1.252 cfs
Storm frequency	= 1 yrs	Time to peak	= 719 min
Time interval	= 1 min	Hyd. volume	= 3,123 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac
,	,		

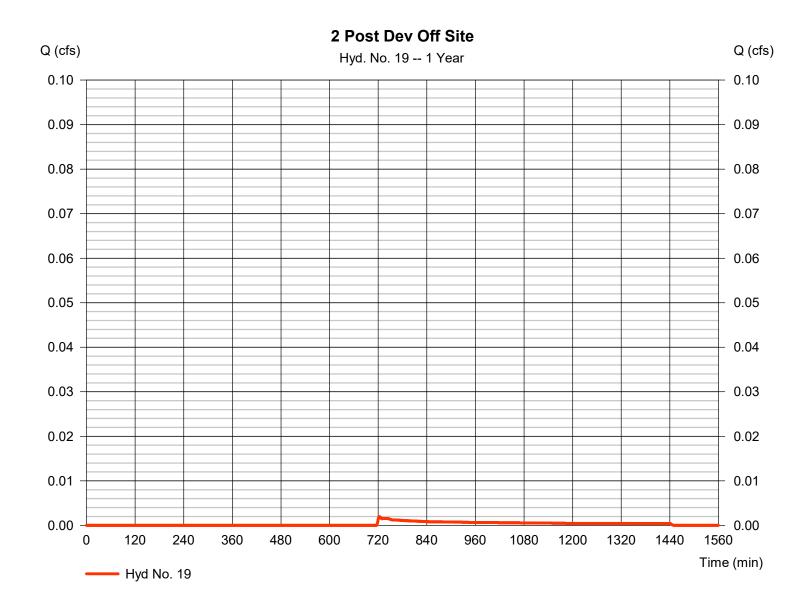


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

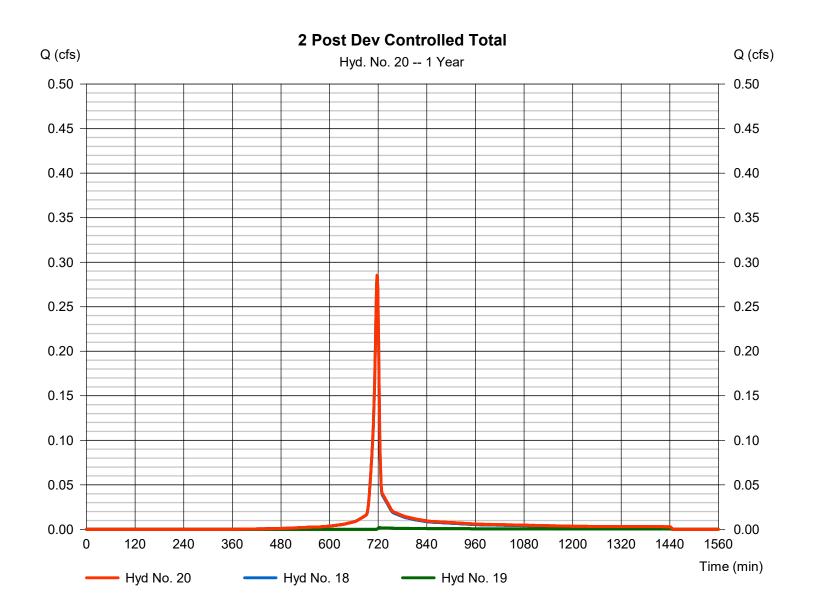
Hydrograph type	= SCS Runoff	Peak discharge	= 0.285 cfs
Storm frequency	= 1 yrs	Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 593 cuft
Drainage area	= 0.090 ac	Curve number	= 90.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

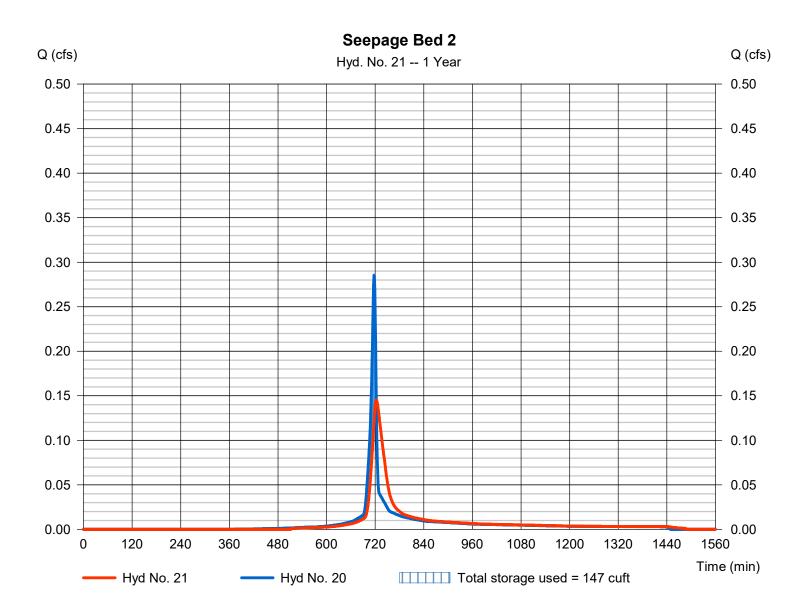
2 Post Dev Off Site


Hydrograph type	= SCS Runoff	Peak discharge	= 0.002 cfs
Storm frequency	= 1 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 28 cuft
Drainage area	= 0.060 ac	Curve number	= 55
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type	 Reservoir 1 yrs 1 min 20 - 2 Post Dev Controlled T 	Peak discharge	= 0.145 cfs
Storm frequency		Time to peak	= 723 min
Time interval		Hyd. volume	= 615 cuft
Inflow hyd. No.		ot a lax. Elevation	= 108.50 ft
Reservoir name	= 20 - 2 Post Dev Controlled T = Seepage Bed 2	Max. Elevation	= 108.50 ft = 147 cuft

Storage Indication method used.

Pond Report

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 3 - Seepage Bed 2

Pond Data

UG Chambers -Invert elev. = 108.25 ft, Rise x Span = 0.50×0.50 ft, Barrel Len = 30.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 108.00 ft, Width = 24.00 ft, Height = 1.00 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	108.00	n/a	0	0
0.10	108.10	n/a	29	29
0.20	108.20	n/a	29	58
0.30	108.30	n/a	29	87
0.40	108.40	n/a	30	116
0.50	108.50	n/a	30	146
0.60	108.60	n/a	30	175
0.70	108.70	n/a	30	205
0.80	108.80	n/a	29	234
0.90	108.90	n/a	29	263
1.00	109.00	n/a	29	292

Culvert / Orifice Structures

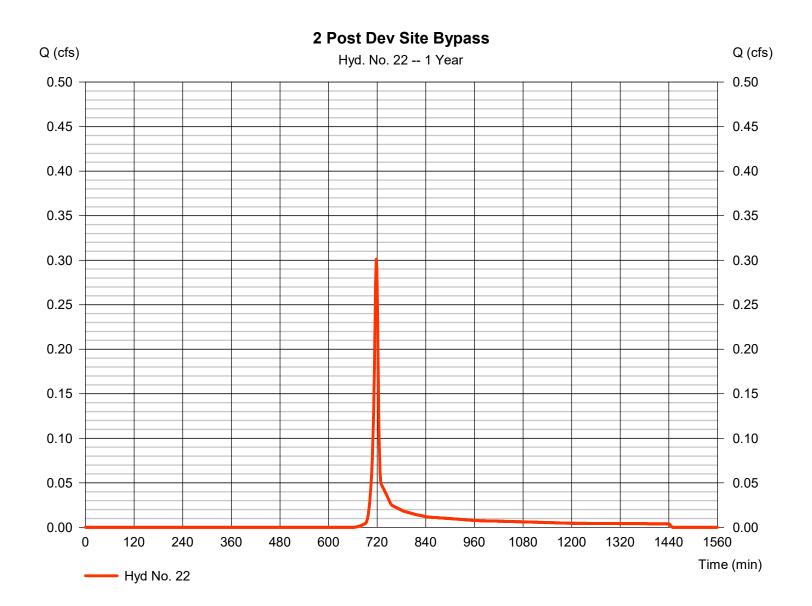
Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	3.00	0.00	0.00	Crest Len (ft)	= 3.14	Inactive	Inactive	Inactive
Span (in)	= 18.00	3.00	0.00	0.00	Crest El. (ft)	= 109.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.32	3.32	3.33	3.33
Invert El. (ft)	= 106.50	108.00	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 42.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 22.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	108.00	0.00	0.00			0.00	0.00					0.000
0.01	3	108.01	7.37 ic	0.00 ic			0.00	0.00					0.000
0.02	6	108.02	7.37 ic	0.00 ic			0.00	0.00					0.001
0.03	9	108.03	7.37 ic	0.00 ic			0.00	0.00					0.002
0.04	12	108.04	7.37 ic	0.00 ic			0.00	0.00					0.004
0.05	14	108.05	7.37 ic	0.01 ic			0.00	0.00					0.006
0.06	17	108.06	7.37 ic	0.01 ic			0.00	0.00					0.008
0.07	20	108.07	7.37 ic	0.01 ic			0.00	0.00					0.010
0.08	23	108.08	7.37 ic	0.01 ic			0.00	0.00					0.013
0.09	26	108.09	7.37 ic	0.02 ic			0.00	0.00					0.016
0.10	29	108.10	7.37 ic	0.02 ic			0.00	0.00					0.020
0.11	32	108.11	7.37 ic	0.02 ic			0.00	0.00					0.024
0.12	35	108.12	7.37 ic	0.03 ic			0.00	0.00					0.028
0.13	37	108.13	7.37 ic	0.03 ic			0.00	0.00					0.032
0.14	40	108.14	7.37 ic	0.04 ic			0.00	0.00					0.036
0.15	43	108.15	7.37 ic	0.04 ic			0.00	0.00					0.041
0.16	46	108.16	7.37 ic	0.05 ic			0.00	0.00					0.046
0.17	49	108.17	7.37 ic	0.05 ic			0.00	0.00					0.050
0.18	52	108.18	7.37 ic	0.06 ic			0.00	0.00					0.055
0.19	55	108.19	7.37 ic	0.06 ic			0.00	0.00					0.060
0.20	58	108.20	7.37 ic	0.06 ic			0.00	0.00					0.064
0.21	61	108.21	7.37 ic	0.07 ic			0.00	0.00					0.069
0.22	63	108.22	7.37 ic	0.07 ic			0.00	0.00					0.073
0.23	66	108.23	7.37 ic	0.08 ic			0.00	0.00					0.077
0.24	69	108.24	7.37 ic	0.08 ic			0.00	0.00					0.081
0.25	72	108.25	7.37 ic	0.08 ic			0.00	0.00					0.084
0.26	75	108.26	7.37 ic	0.09 ic			0.00	0.00					0.087
0.27	78	108.27	7.37 ic	0.09 ic			0.00	0.00					0.090
0.28	81	108.28	7.37 ic	0.09 ic			0.00	0.00					0.093
0.29	84	108.29	7.37 ic	0.10 ic			0.00	0.00					0.096
0.30	87	108.30	7.37 ic	0.10 ic			0.00	0.00					0.099
0.31	90	108.31	7.37 ic	0.10 ic			0.00	0.00					0.102
											Continue		+

Seepage Bed 2 Stage / Storage / Discharge Table

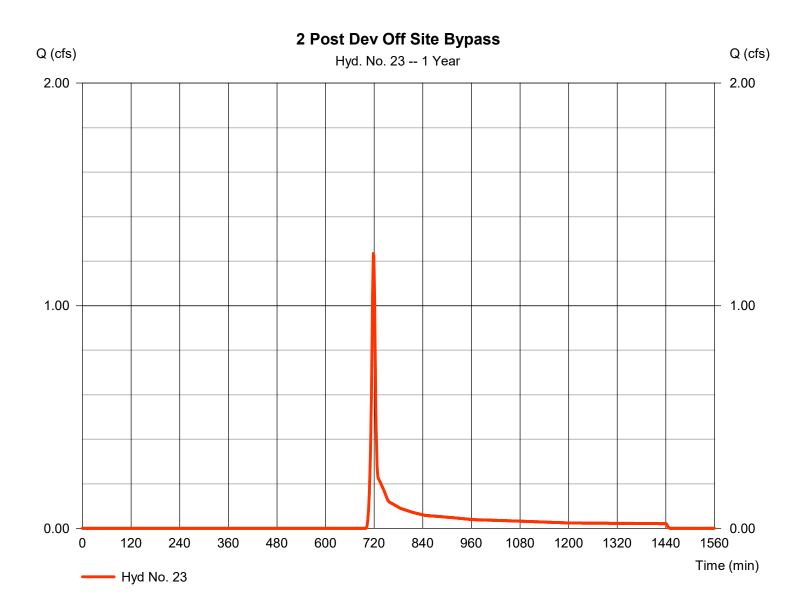

Stage / a	Storage / L	Jischarge	ladie										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.32	93	108.32	7.37 ic	0.10 ic			0.00	0.00					0.104
0.33	95	108.33	7.37 ic	0.11 ic			0.00	0.00					0.107
0.34	98	108.34	7.37 ic	0.11 ic			0.00	0.00					0.110
0.35	101	108.35	7.37 ic	0.11 ic			0.00	0.00					0.112
0.36	104	108.36	7.37 ic	0.11 ic			0.00	0.00					0.115
0.37 0.38	107	108.37	7.37 ic	0.12 ic			0.00	0.00 0.00					0.117
0.38	110 113	108.38 108.39	7.37 ic 7.37 ic	0.12 ic 0.12 ic			0.00 0.00	0.00					0.119 0.122
0.39	113	108.39	7.37 ic	0.12 ic 0.12 ic			0.00	0.00					0.122
0.40	119	108.41	7.37 ic	0.12 ic			0.00	0.00					0.124
0.42	122	108.42	7.37 ic	0.13 ic			0.00	0.00					0.128
0.43	125	108.43	7.37 ic	0.13 ic			0.00	0.00					0.131
0.44	128	108.44	7.37 ic	0.13 ic			0.00	0.00					0.133
0.45	131	108.45	7.37 ic	0.13 ic			0.00	0.00					0.135
0.46	134	108.46	7.37 ic	0.14 ic			0.00	0.00					0.137
0.47	137	108.47	7.37 ic	0.14 ic			0.00	0.00					0.139
0.48	140	108.48	7.37 ic	0.14 ic			0.00	0.00					0.141
0.49	143	108.49	7.37 ic	0.14 ic			0.00	0.00					0.143
0.50	146	108.50	7.37 ic	0.14 ic			0.00	0.00					0.145
0.51 0.52	149	108.51 108.52	7.37 ic	0.15 ic			0.00 0.00	0.00 0.00					0.147
0.52	152 155	108.52	7.37 ic 7.37 ic	0.15 ic 0.15 ic			0.00	0.00					0.149 0.150
0.54	158	108.54	7.37 ic	0.15 ic 0.15 ic			0.00	0.00					0.150
0.55	161	108.55	7.37 ic	0.15 ic			0.00	0.00					0.152
0.56	164	108.56	7.37 ic	0.16 ic			0.00	0.00					0.156
0.57	167	108.57	7.37 ic	0.16 ic			0.00	0.00					0.158
0.58	170	108.58	7.37 ic	0.16 ic			0.00	0.00					0.159
0.59	173	108.59	7.37 ic	0.16 ic			0.00	0.00					0.161
0.60	175	108.60	7.37 ic	0.16 ic			0.00	0.00					0.163
0.61	178	108.61	7.37 ic	0.16 ic			0.00	0.00					0.165
0.62	181	108.62	7.37 ic	0.17 ic			0.00	0.00					0.166
0.63	184	108.63	7.37 ic	0.17 ic			0.00	0.00					0.168
0.64 0.65	187 190	108.64 108.65	7.37 ic 7.37 ic	0.17 ic 0.17 ic			0.00 0.00	0.00 0.00					0.170 0.171
0.66	190	108.66	7.37 ic	0.17 ic 0.17 ic			0.00	0.00					0.171
0.67	195	108.67	7.37 ic	0.17 ic			0.00	0.00					0.173
0.68	199	108.68	7.37 ic	0.18 ic			0.00	0.00					0.176
0.69	202	108.69	7.37 ic	0.18 ic			0.00	0.00					0.178
0.70	205	108.70	7.37 ic	0.18 ic			0.00	0.00					0.179
0.71	208	108.71	7.37 ic	0.18 ic			0.00	0.00					0.181
0.72	211	108.72	7.37 ic	0.18 ic			0.00	0.00					0.182
0.73	214	108.73	7.37 ic	0.18 ic			0.00	0.00					0.184
0.74	217	108.74	7.37 ic	0.19 ic			0.00	0.00					0.185
0.75	219	108.75	7.37 ic	0.19 ic			0.00	0.00					0.187
0.76	222	108.76	7.37 ic	0.19 ic			0.00	0.00					0.188
0.77 0.78	225 228	108.77 108.78	7.37 ic 7.37 ic	0.19 ic 0.19 ic			0.00 0.00	0.00 0.00					0.190 0.191
0.78	220	108.79	7.37 ic	0.19 ic 0.19 ic			0.00	0.00					0.191
0.80	234	108.80	7.37 ic	0.19 ic			0.00	0.00					0.193
0.81	237	108.81	7.37 ic	0.20 ic			0.00	0.00					0.196
0.82	240	108.82	7.37 ic	0.20 ic			0.00	0.00					0.197
0.83	243	108.83	7.37 ic	0.20 ic			0.00	0.00					0.198
0.84	246	108.84	7.37 ic	0.20 ic			0.00	0.00					0.200
0.85	248	108.85	7.37 ic	0.20 ic			0.00	0.00					0.201
0.86	251	108.86	7.37 ic	0.20 ic			0.00	0.00					0.203
0.87	254	108.87	7.37 ic	0.20 ic			0.00	0.00					0.204
0.88	257	108.88	7.37 ic	0.21 ic			0.00	0.00					0.205
0.89	260	108.89	7.37 ic	0.21 ic			0.00	0.00					0.207
0.90	263	108.90	7.37 ic	0.21 ic			0.00	0.00					0.208
0.91 0.92	266 269	108.91 108.92	7.37 ic 7.37 ic	0.21 ic 0.21 ic			0.00 0.00	0.00 0.00					0.209 0.211
0.92	209	108.92	7.37 ic	0.21 ic 0.21 ic			0.00	0.00					0.211
0.93	274	108.94	7.37 ic	0.21 ic			0.00	0.00					0.212
0.94	274	108.95	7.37 ic	0.21 ic			0.00	0.00					0.215
0.96	280	108.96	7.37 ic	0.22 ic			0.00	0.00					0.216
0.97	283	108.97	7.37 ic	0.22 ic			0.00	0.00					0.217
0.98	286	108.98	7.37 ic	0.22 ic			0.00	0.00					0.219
0.99	289	108.99	7.37 ic	0.22 ic			0.00	0.00					0.220
1.00	292	109.00	7.37 ic	0.22 ic			0.00	0.00					0.221

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.301 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 614 cuft
Drainage area	= 0.200 ac	Curve number	= 75.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

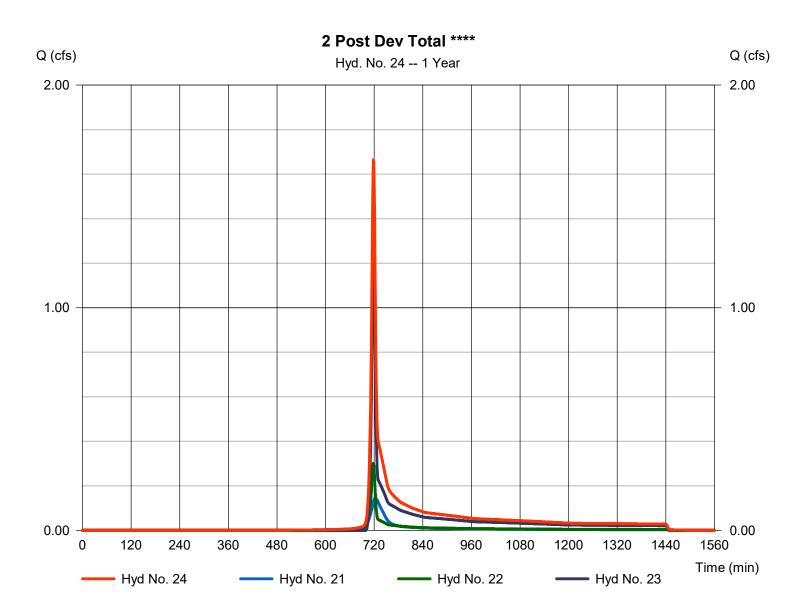


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 1.235 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 2,727 cuft
Drainage area	= 1.350 ac	Curve number	= 69.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.71 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 24

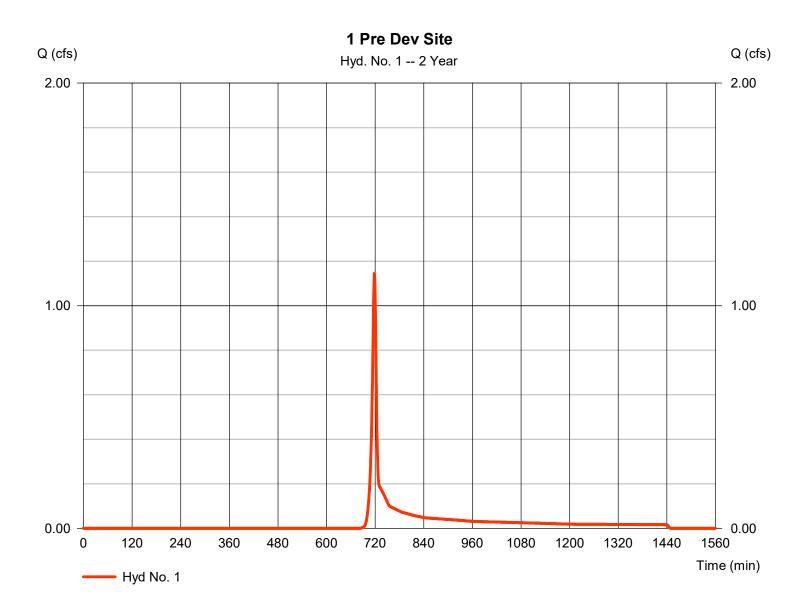
2 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 1.664 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 3,956 cuft
Inflow hyds.	= 21, 22, 23	Contrib. drain. area	= 1.550 ac

Friday, 09 / 22 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

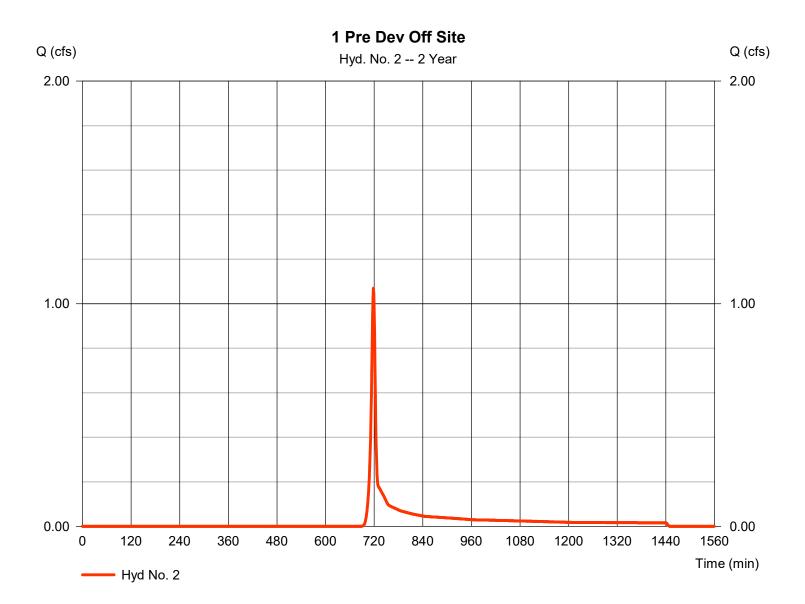

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.146	1	718	2,377				1 Pre Dev Site
2	SCS Runoff	1.070	1	718	2,237				1 Pre Dev Off Site
3	Combine	2.215	1	718	4,614	1, 2			1 Pre Dev Total ****
4	SCS Runoff	1.456	1	718	2,967				1A Post Dev Site
5	SCS Runoff	1.045	1	718	2,203				1A Post Dev Off Site
6	Combine	2.501	1	718	5,169	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.272	1	743	2,311	6	127.89	2,214	Seepage Bed 1A
8	SCS Runoff	1.270	1	717	2,914				1B Post Dev Site
9	Combine	1.270	1	717	5,225	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.834	1	721	2,703	9	127.58	556	Seepage Bed 1B
11	SCS Runoff	0.410	1	718	824				1 Post Dev Site Bypass
12	SCS Runoff	0.225	1	718	455				1 Post Dev Off Site Bypass
13	Combine	1.401	1	719	3,982	10, 11, 12			1 Post Dev Total ****
15	SCS Runoff	0.305	1	720	770				2 Pre Dev Site
16	SCS Runoff	1.900	1	719	4,220				2 Pre Dev Off Site
17	Combine	2.205	1	719	4,990	15, 16			2 Pre Dev Total ****
18	SCS Runoff	0.363	1	717	764				2 Post Dev Site
19	SCS Runoff	0.015	1	720	60				2 Post Dev Off Site
20	Combine	0.373	1	718	825	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.175	1	723	819	20	108.67	197	Seepage Bed 2
22	SCS Runoff	0.442	1	718	889				2 Post Dev Site Bypass
23	SCS Runoff	2.034	1	718	4,236				2 Post Dev Off Site Bypass
24	Combine	2.629	1	718	5,944	21, 22, 23			2 Post Dev Total ****
301	Watersheds	2084 SC	S.gpw		Return	Period: 2 Ye	ear	Friday, 09	/ 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

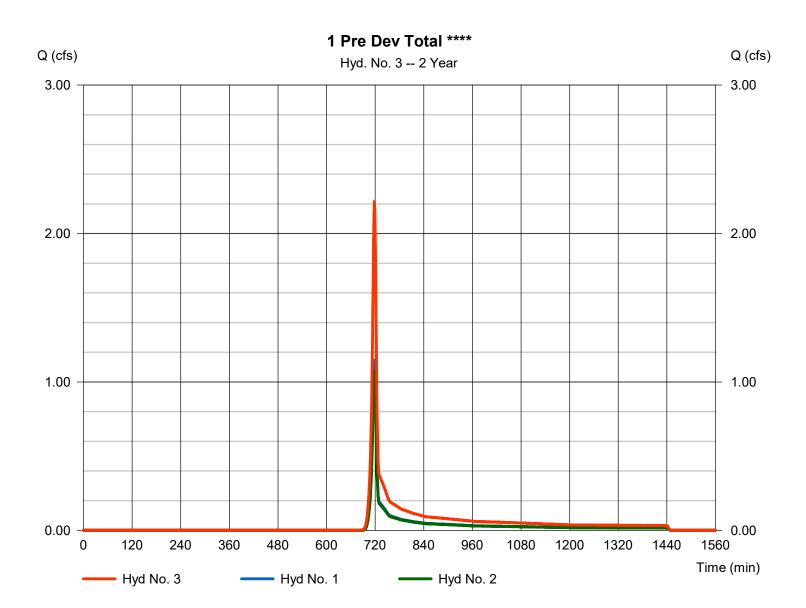
Hydrograph type	= SCS Runoff	Peak discharge	= 1.146 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 2,377 cuft
Drainage area	= 0.740 ac	Curve number	= 69.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


57 of 293

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

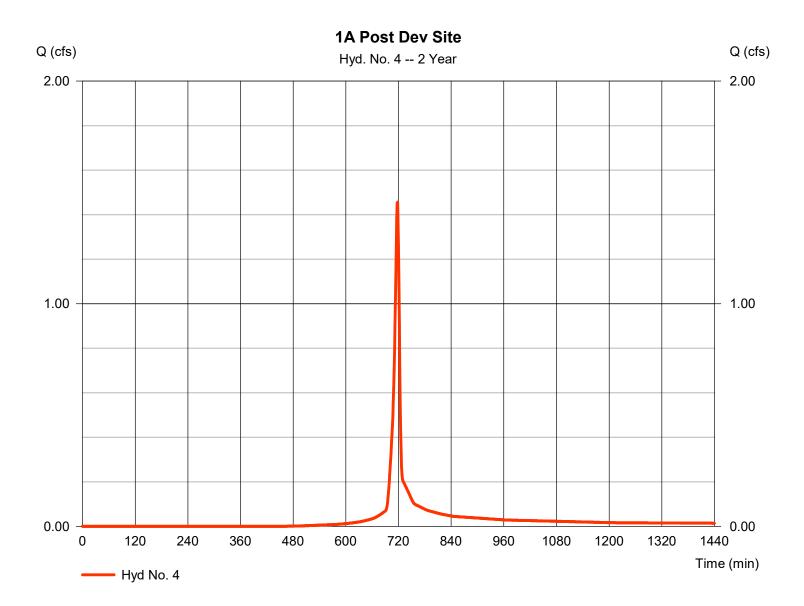
1 Pre Dev Off Site


Hydrograph type	= SCS Runoff	Peak discharge	= 1.070 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 2,237 cuft
Drainage area	= 0.730 ac	Curve number	= 69.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

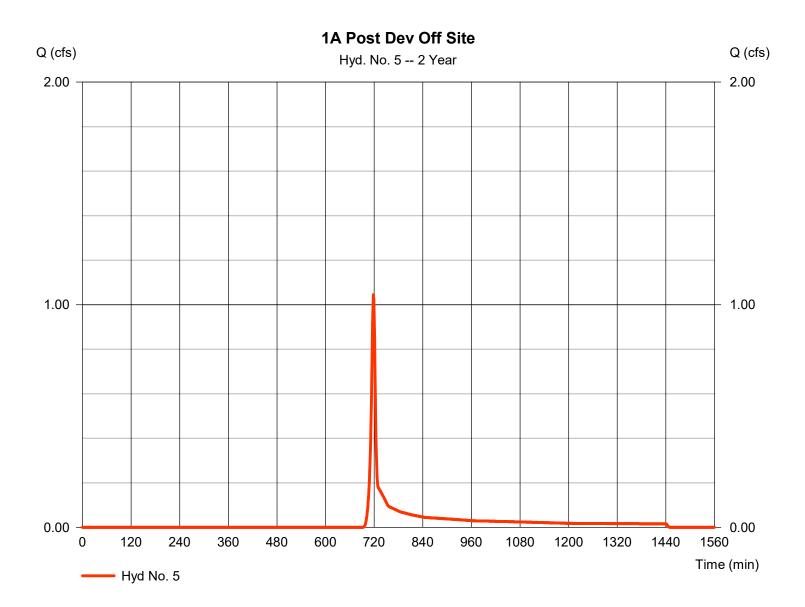

59 of 293

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= SCS Runoff	Peak discharge	= 1.456 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 2,967 cuft
Drainage area	= 0.440 ac	Curve number	= 84.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

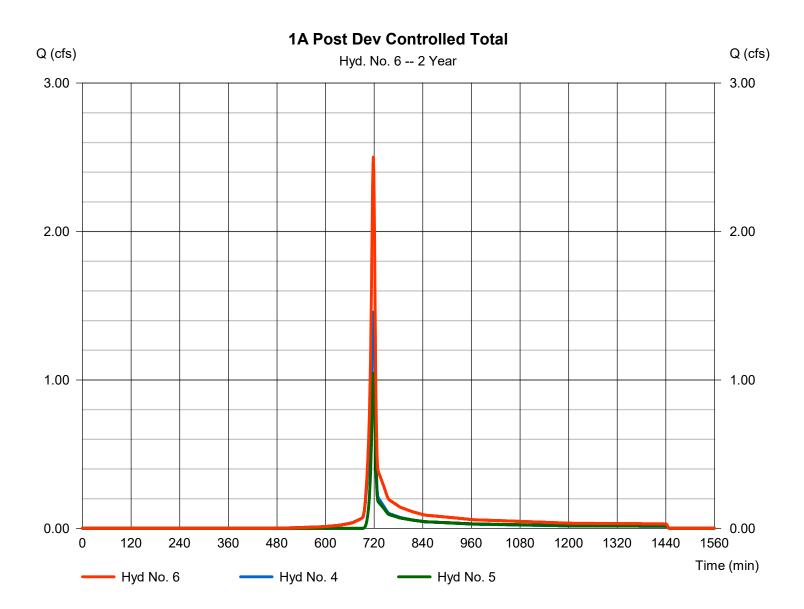


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= SCS Runoff	Peak discharge	= 1.045 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 2,203 cuft
Drainage area	= 0.750 ac	Curve number	= 68.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



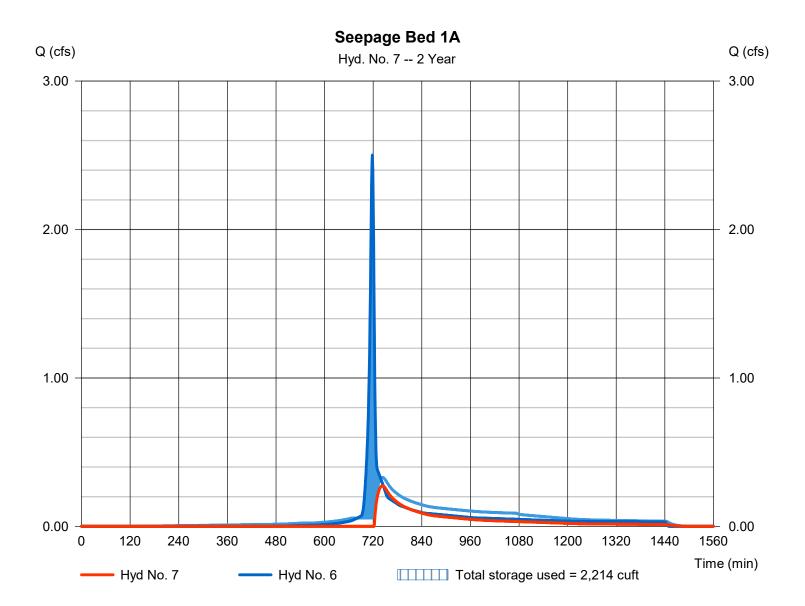
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 2.501 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 5,169 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 1.190 ac

Friday, 09 / 22 / 2023

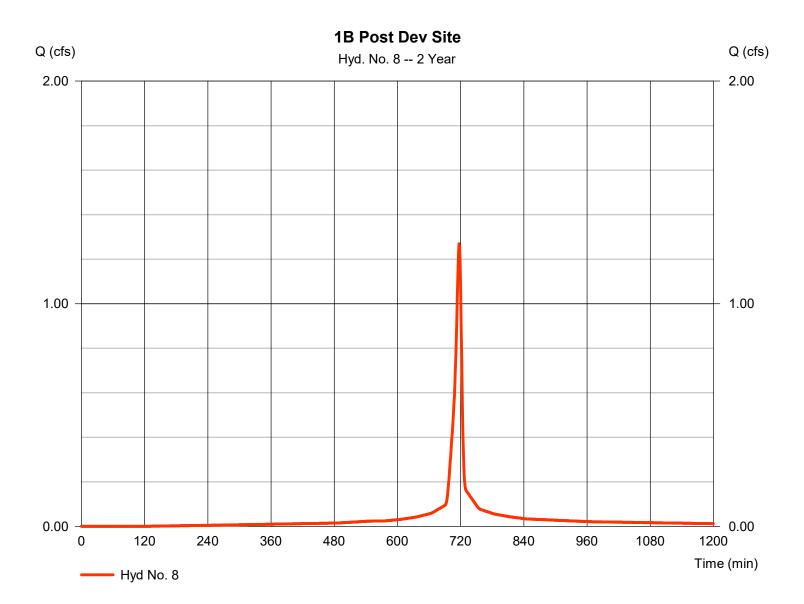

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	= Reservoir	Peak discharge	= 0.272 cfs
Storm frequency	= 2 yrs	Time to peak	= 743 min
Time interval	= 1 min	Hyd. volume	= 2,311 cuft
Inflow hyd. No.	= 6 - 1A Post Dev Contro	lled TotMax. Elevation	= 127.89 ft
Reservoir name	= Seepage Bed 1A	Max. Storage	= 2,214 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

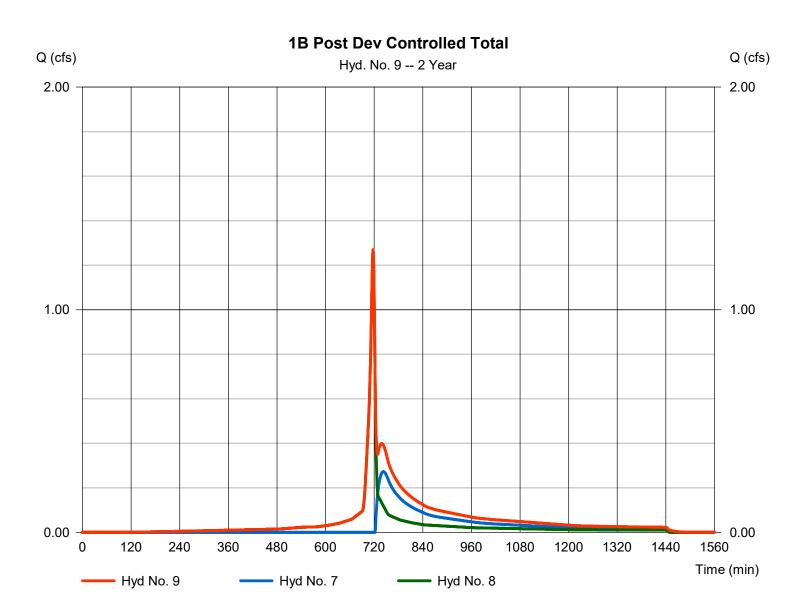


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= SCS Runoff	Peak discharge	= 1.270 cfs
Storm frequency	= 2 yrs	Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 2,914 cuft
Drainage area	= 0.270 ac	Curve number	= 96.7
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



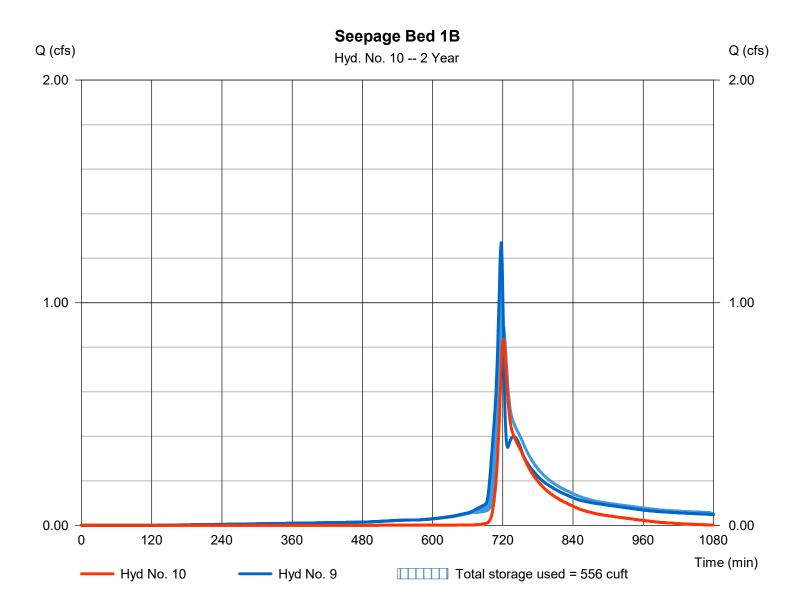
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	Combine2 yrs	Peak discharge	= 1.270 cfs
Storm frequency		Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 5,225 cuft
Inflow hyds.	= 7, 8	Contrib. drain. area	= 0.270 ac

Friday, 09 / 22 / 2023

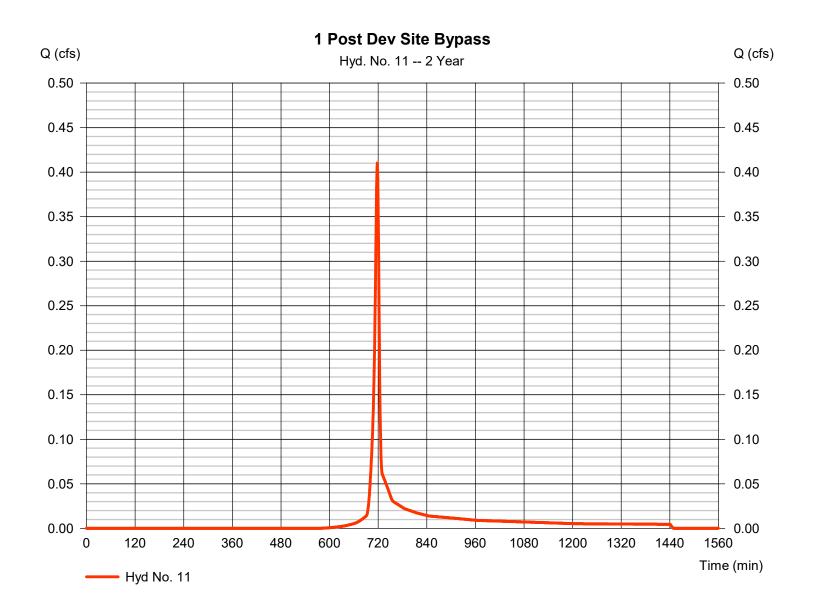

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type	= Reservoir	Peak discharge	= 0.834 cfs
Storm frequency	= 2 yrs	Time to peak	= 721 min
Time interval	 = 1 min = 9 - 1B Post Dev Controlled Te = Seepage Bed 1B 	Hyd. volume	= 2,703 cuft
Inflow hyd. No.		ot M ax. Elevation	= 127.58 ft
Reservoir name		Max. Storage	= 556 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

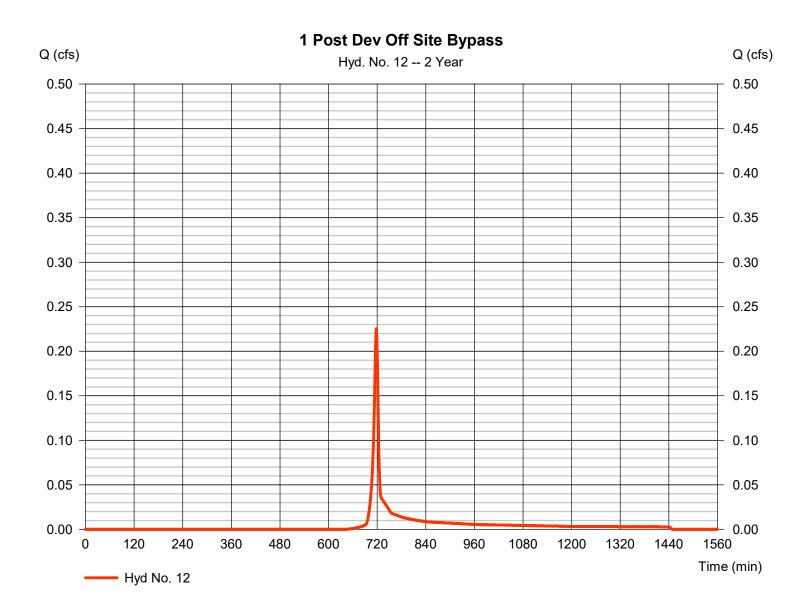


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.410 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 824 cuft
Drainage area	= 0.160 ac	Curve number	= 78.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

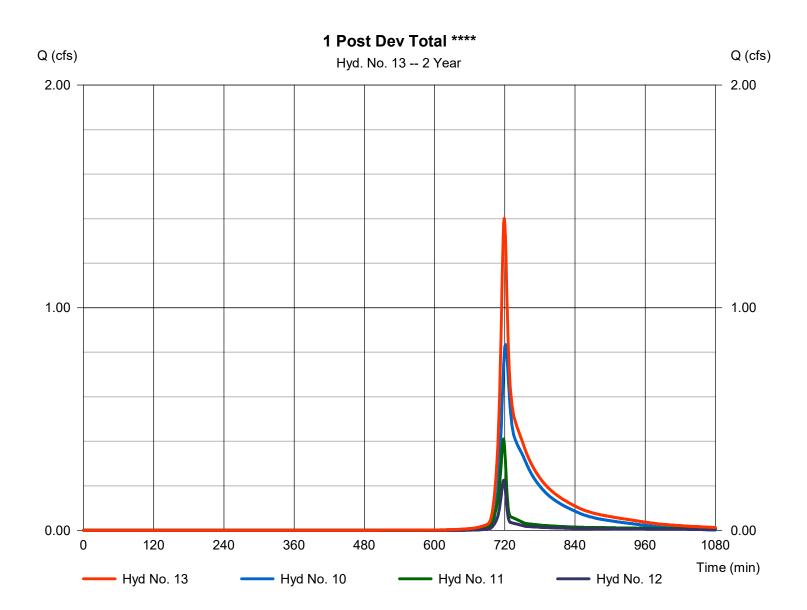


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.225 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 455 cuft
Drainage area	= 0.110 ac	Curve number	= 74.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

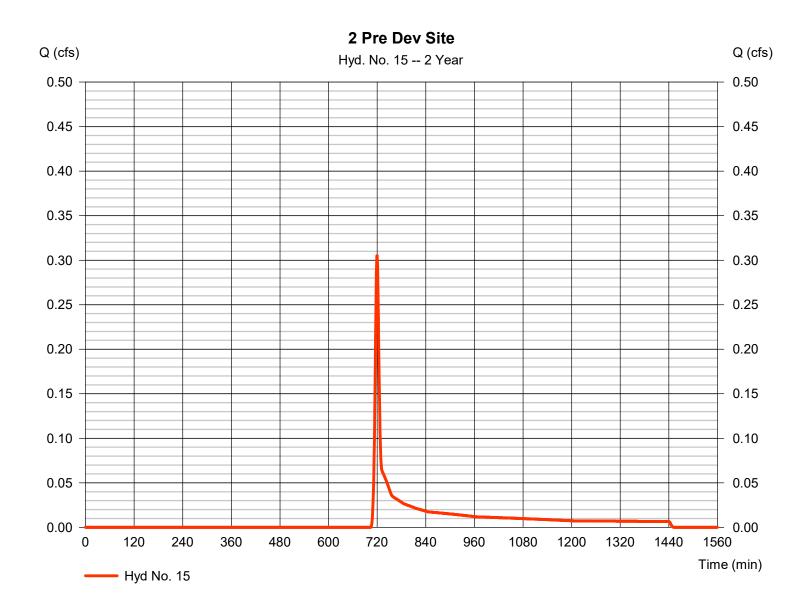


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 1.401 cfs
Storm frequency	= 2 yrs	Time to peak	= 719 min
Time interval	= 1 min	Hyd. volume	= 3,982 cuft
Inflow hyds.	= 10, 11, 12	Contrib. drain. area	= 0.270 ac

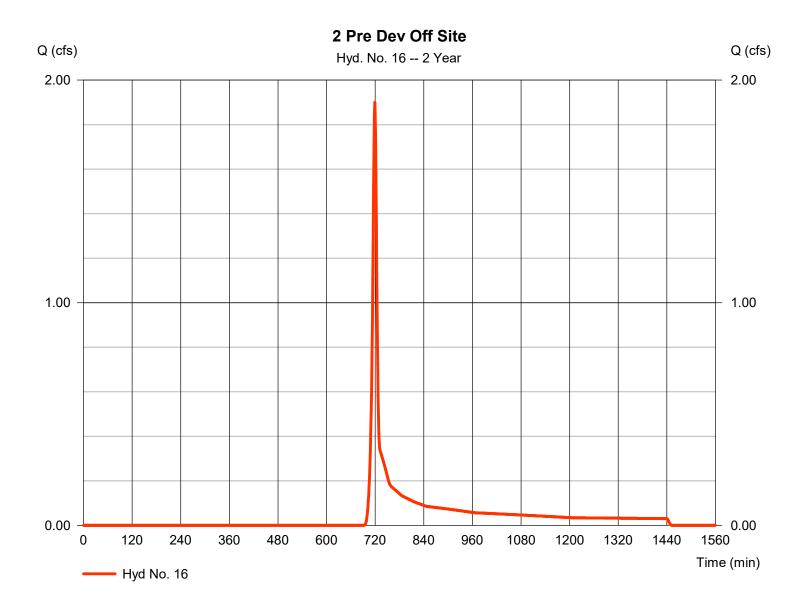


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= SCS Runoff	Peak discharge	= 0.305 cfs
Storm frequency	= 2 yrs	Time to peak	= 720 min
Time interval	= 1 min	Hyd. volume	= 770 cuft
Drainage area	= 0.410 ac	Curve number	= 62.6
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

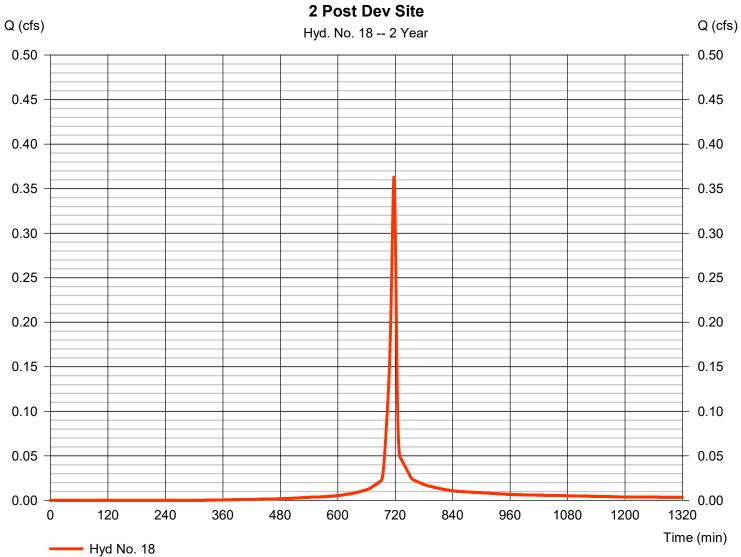
Hydrograph type	= SCS Runoff	Peak discharge	= 1.900 cfs
Storm frequency	= 2 yrs	Time to peak	= 719 min
Time interval	= 1 min	Hyd. volume	= 4,220 cuft
Drainage area	= 1.520 ac	Curve number	= 68.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 2.205 cfs
Storm frequency	= 2 yrs	Time to peak	= 719 min
Time interval	= 1 min	Hyd. volume	= 4,990 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac
5			

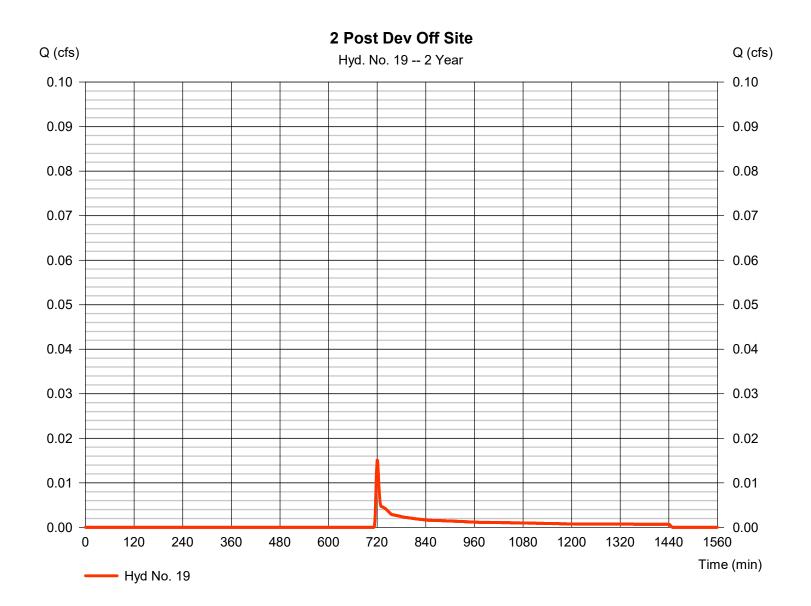

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

Hydrograph type	= SCS Runoff	Peak discharge	= 0.363 cfs
Storm frequency	= 2 yrs	Time to peak	= 717 min
Time interval	= 1 min	Hyd. volume	= 764 cuft
Drainage area	= 0.090 ac	Curve number	= 90.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

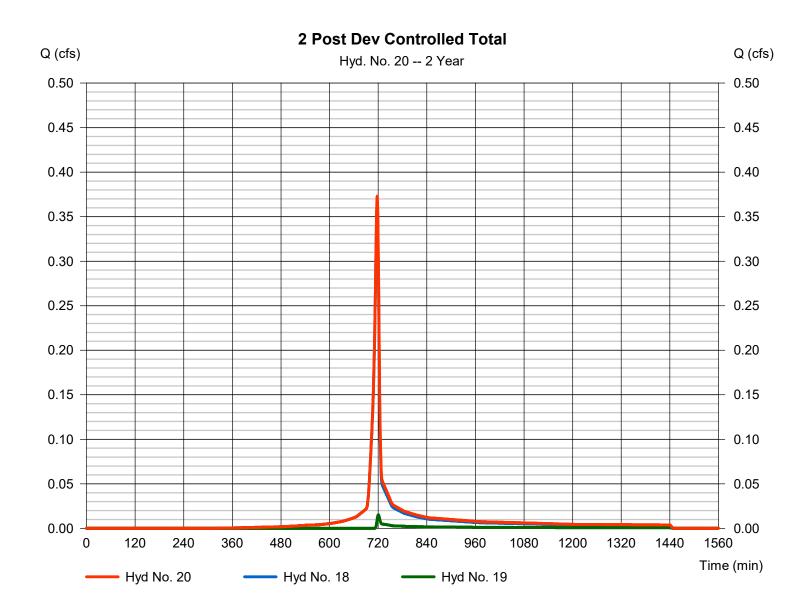

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

2 Post Dev Off Site

Hydrograph type	= SCS Runoff	Peak discharge	= 0.015 cfs
Storm frequency	= 2 yrs	Time to peak	= 720 min
Time interval	= 1 min	Hyd. volume	= 60 cuft
Drainage area	= 0.060 ac	Curve number	= 55
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

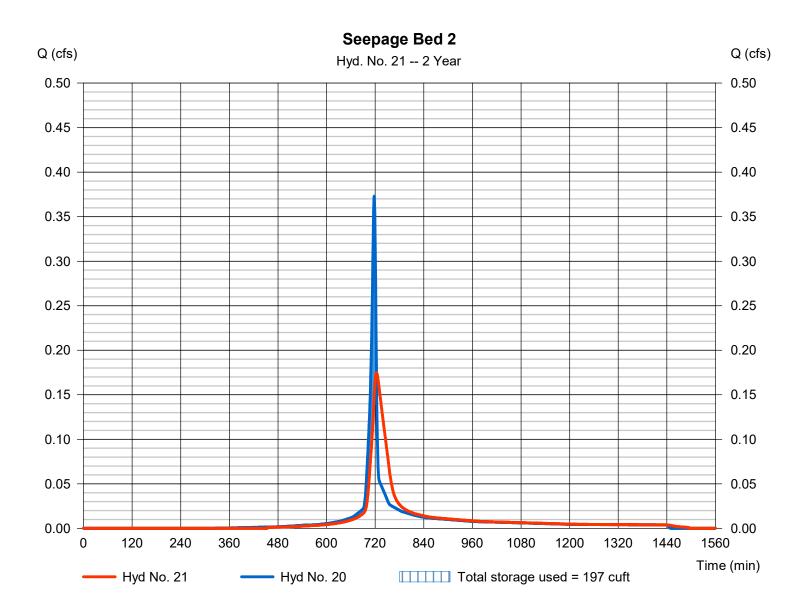


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total

Hydrograph type	 Combine 2 yrs 1 min 18, 19 	Peak discharge	= 0.373 cfs
Storm frequency		Time to peak	= 718 min
Time interval		Hyd. volume	= 825 cuft
Inflow hyds.		Contrib. drain. area	= 0.150 ac
Inflow hyds.	= 18, 19	Contrib. drain. area	= 0.150 ac

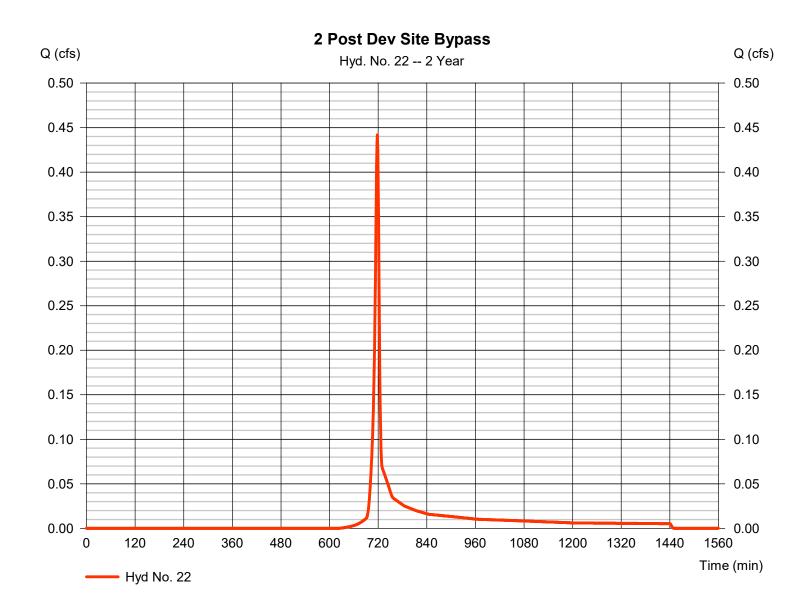

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type	= Reservoir	Peak discharge	= 0.175 cfs
Storm frequency	= 2 vrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 819 cuft
Inflow hyd. No.	= 20 - 2 Post Dev Conti	rolled Tot a lax. Elevation	= 108.67 ft
Reservoir name	= Seepage Bed 2	Max. Storage	= 197 cuft

Storage Indication method used.

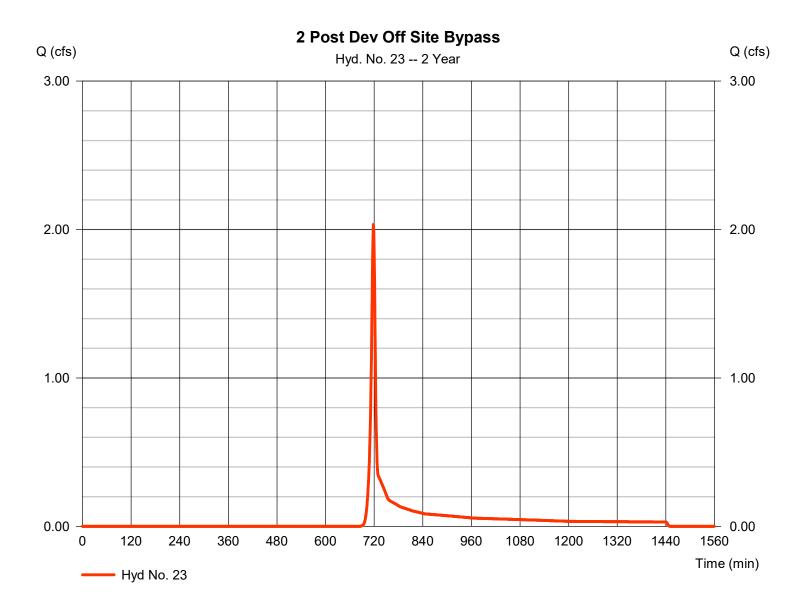


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 0.442 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 889 cuft
Drainage area	= 0.200 ac	Curve number	= 75.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	=	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

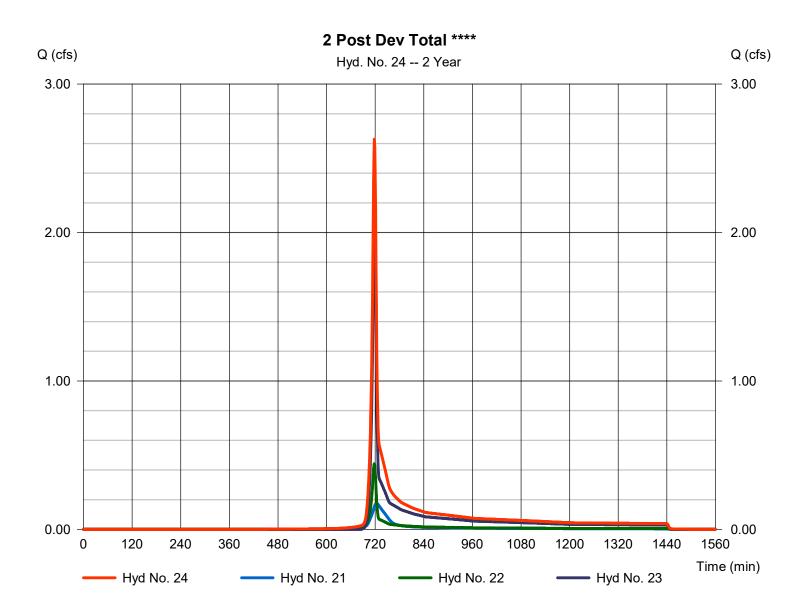

77 of 293

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= SCS Runoff	Peak discharge	= 2.034 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 4,236 cuft
Drainage area	= 1.350 ac	Curve number	= 69.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 24

2 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 2.629 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 5,944 cuft
Inflow hyds.	= 21, 22, 23	Contrib. drain. area	= 1.550 ac

Project: 2084 Brilla LLC Location: Bensalem Township

Peak Rate Control Summary Table

Rational Method

	Pre	Development Ru	noff			Post De	evelopment Rund	off and Dischar	ges	
Design				1A	1A	1A	Se	epage Bed 1A		1B
Storm	Site	Off Site	Total	Site	Off Site	Total	Discharge	Elevation	Storage	Site
1	1.36	1.45	2.81	1.24	1.33	2.57	0.00	126.78	915	0.98
2	1.62	1.72	3.34	1.48	1.58	3.06	0.00	126.92	1090	1.17
5	1.91	2.04	3.95	1.74	1.87	3.62	0.00	127.09	1290	1.38
10	2.12	2.26	4.38	1.93	2.08	4.01	0.00	127.21	1432	1.53
25	2.37	2.52	4.89	2.16	2.32	4.48	0.00	127.36	1601	1.71
50	2.55	2.71	5.26	2.32	2.49	4.82	0.00	127.46	1722	1.83
100	2.72	2.89	5.60	2.47	2.66	5.13	0.00	127.56	1836	1.96
Hydroflow col	с	с	с	с	с	с	с	i	I	с
Hvdroflow row	3	4	5	6	7	8	9	9	9	10

Point of I	nterest	1						
		Post De	evelopment Ru	unoff and Disch	arges			
Design	S	eepage Bed 1B		Bypass	Bypass	Post		% of
Storm	Discharge	Elevation	Storage	Site	Off Site	Total	Allowable	allowable
1	0.23	127.27	255	0.38	0.24	0.72	2.81	25%
2	0.31	127.31	299	0.46	0.29	0.87	3.34	26%
5	0.40	127.36	348	0.54	0.34	1.05	3.95	27%
10	0.47	127.40	382	0.60	0.38	1.18	4.38	27%
25	0.55	127.44	421	0.67	0.42	1.34	4.89	27%
50	0.61	127.47	449	0.72	0.45	1.46	5.26	28%
100	0.67	127.49	474	0.76	0.48	1.57	5.60	28%
Hydroflow col	с	i	j	с	с	с		
Hydroflow row	12	12	12	13	14	15		

Point of Interest

Neshaminy Creek District B

	Pre I	Development Ru	noff		Post De	velopment Ru	inoff and Discha	rges	
Design							Se	epage Bed 2	
Storm	Site	Off Site	Total	Site	Off Site	Total	Discharge	Elevation	Storage
1	0.48	2.52	3.01	0.29	0.03	0.31	0.10	108.29	82
2	0.58	3.00	3.58	0.34	0.03	0.37	0.11	108.34	98
5	0.68	3.56	4.24	0.41	0.04	0.44	0.12	108.40	116
10	0.76	3.95	4.70	0.45	0.04	0.49	0.13	108.44	129
25	0.85	4.41	5.26	0.50	0.04	0.55	0.14	108.49	144
50	0.91	4.74	5.65	0.54	0.05	0.59	0.15	108.53	156
100	0.97	5.05	6.02	0.58	0.05	0.63	0.16	108.57	166
Hydroflow col	с	с	с	c	с	с	с	1	I
Hydroflow row	17	18	19	20	21	22	23	23	23

Point of Interest 2 Neshaminy Creek District B

2

Design	Bypass	Bypass	Post		% of
Storm	Site	Off Site	Total	Allowable	allowable
1	0.44	2.50	3.00	3.01	100%
2	0.52	2.98	3.57	3.58	100%
5	0.62	3.52	4.22	4.24	100%
10	0.69	3.90	4.68	4.70	99%
25	0.77	4.36	5.22	5.26	99%
50	0.82	4.68	5.61	5.65	99%
100	0.88	4.99	5.98	6.02	99%
Hydroflow col	с	с	с		
Hydroflow row	24	25	26		

end page

By: DLF Date: 9/22/2023

1B Total 0.98 1.17 1.38 1.53 1.71 1.83 1.96

с 11

				Input S	ummary R	ational Meth	od			
Point of Interest	Name	Discharge To	Condition	Location	Area (ac)	Impervious	Lawn	с	Tc (min)	Notes
1	1	Property Line	Present	Site	0.74	0.19		0.47	6.00	
1	1	Property Line	Present	Offsite	0.73	0.16		0.48	6.00	
1	1A	Seepage Bed	Developed	Site	0.44	0.27		0.73	6.00	
1	1A	Seepage Bed	Developed	Offsite	0.75	0.15	0.60	0.46	6.00	
1	1B	Seepage Bed	Developed	Site	0.27	0.26	0.01	0.94	6.00	
1	1	Bypass	Developed	Site	0.16	0.07	0.09	0.62	6.00	
1	1	Bypass	Developed	Offsite	0.11	0.04	0.07	0.57	6.00	
2	2	Property Line	Present	Site	0.41	0.04	0.37	0.32	6.77	
2	2	Property Line	Present	Offsite	1.52	0.32	1.20	0.45	6.77	
2	2	Seepage Bed	Developed	Site	0.09	0.07	0.02	0.83	6.00	
2	2	Seepage Bed	Developed	Offsite	0.06	0.00		0.11	6.00	
2	2	Bypass	Developed	Site	0.20	0.07		0.57	6.00	
2	2	Bypass	Developed	Offsite	1.35	0.32		0.48	6.00	
Seepage B	ed Loadings			Reccomended			Reccomended	Proposed		
	Seepage Bed	Impervious Area	Ratio to 1	Bed Footprint	Drainage Area	Ratio to 1	Bed Footprint	Bed Footprint	Result	
	1A 1B 2	11761 11326 3049	5.00 5.00 5.00	2352 2265 610	19166 11761 3920	8.00 8.00 8.00	2396 1470 490	2880 2400 720	120% 106% 118%	

Rational Method C Value Calculations

,	2084 Bensa		-	ip																					By: Date:			LF 2/2022	
Summary Table	of Ra	itional	Runo	off Coe	fficen	ts																					Multi-	Values	s used
Soils			ŀ	4					E	3					(С					E)			Min	Max	plier	Pre	Post
Freguency		< 25			>= 25			< 25			>= 25			< 25			>= 25			< 25			>= 25						
Slope	0-2	2-6	6+	0-2	2-6	6+	0-2	2-6	6+	0-2	2-6	6+	0-2	2-6	6+	0-2	2-6	6+	0-2	2-6	6+	0-2	2-6	6+					
mpervious	0.85	0.86	0.87	0.95	0.96	0.97	0.85	0.86	0.87	0.95	0.96	0.97	0.85	0.86	0.87	0.95	0.96	0.97	0.85	0.86	0.87	0.95	0.96	0.97	0.85	0.97	1.00		0.96
Meadow	0.10	0.16	0.25	0.14	0.22	0.30	0.14	0.22	0.30	0.20	0.28	0.37	0.20	0.28	0.36	0.26	0.35	0.44	0.24	0.30	0.40	0.30	0.40	0.50	0.10	0.50	1.00	0.20	
_awn/Pasture/T urf	0.12	0.20	0.30	0.15	0.25	0.37	0.18	0.28	0.37	0.23	0.34	0.45	0.24	0.34	0.44	0.30	0.42	0.52	0.30	0.40	0.50	0.37	0.50	0.62	0.12	0.62	1.00		0.50
Woods Good	0.05	0.08	0 1 1	0.08	0 1 1	0 14	0.08	0 1 1	0 14	0 10	0 14	0 18	0 10	0.13	0 16	0 12	0 16	0 20	0.12	0.16	0.20	0 15	0.20	0 25	0.05	0.25	1.00	0.10	

Benslem Township Table B-7. Rational Runoff Coefficients

		Rational I	Method Runo	ff Coefficent		
Project	2084 Brilla LL	C			B	y: DLF
ocation:	Bensalem To	wnship			Date	e: 09/22/2023
		-				
Condition	Present		POI	1		
Ex imp credit	0.80		Discharge to	Property Line		
_awn x	1.00		Location	Site		
				Watershed Area	0.74	acres
Runoff Coef	ficent				0.0012	sq mi
	Soil name	Cover	Description	C	Area	"C" x Area
					acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.25		
total in acres	A	Meadow		0.16		
	A	Woods		0.10		
.,	В	Impervious		0.96	0.19	0.18
soil group	В	Turf		0.34	0.46	0.16
total in acres	В	Meadow Woods		0.22	0.00	0.01
0.74	B C	Impervious		0.11 0.96	0.09	0.01
soil group	C C	Turf		0.50		
total in acres	C	Meadow		0.28		
	C	Woods		0.10		
	D	Impervious		0.96		
soil group	D	Turf		0.50		
total in acres	D	Meadow		0.20		
	D	Woods		0.10		
				Total	0.74	0.35
			C=	= 0.47	25.95%	Impervious
	Runoff Volum		_			
	Storm	Rainfall	Runoff	Volume		
	<u>yr</u>	in	in	cf		
	MDE		105.09			
	EISA	0.74	105.09	070000	25.9%	
	1 2	2.71	103.58 103.27	278226		
	2 5	3.26 4.11	103.27	277403 276134		
	5 10	4.11 4.81	102.80	275092		
	25	5.83	102.41	273578		
	50	6.70	101.85	272290		
	100	7.63	100.86	270918		

		Rational M	ethod Runo	off Coefficent		
Project	2084 Brilla LL	с			B	y:DLF
Location:	Bensalem Tov	wnship			Date	e: 09/22/2023
Condition	Present	7	POI	4		
Ex imp credit	1.00		Discharge to	1 Property Line		
Lawn x	1.00		Location	Offsite		
	1.00		Location	Watershed Area	0.73	acres
Runoff Coef	ficent			Watershed Area	0.0011	sq mi
	Soil name	Cover D	escription	"C"	Area	"C" x Area
		•			acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.25		
total in acres	A	Meadow		0.16		
	A	Woods		0.10	0.40	0.45
soil group	B	Impervious Turf		0.96	0.16 0.57	0.15
total in acres	B	Meadow		0.34	0.57	0.19
0.73	B	Woods		0.22		
0.70	C	Impervious		0.96		
soil group	C	Turf		0.50		
total in acres	C	Meadow		0.28		
	С	Woods		0.10		
	D	Impervious		0.96		
soil group	D	Turf		0.50		
total in acres	D	Meadow		0.20		
	D	Woods		0.10		
				Total	0.73	0.35
	Runoff Volum	25	C	= 0.48	21.92%	Impervious
	Storm	Rainfall in	Runoff in	Volume cf		
	MDE		104.57	277090		
	EISA		104.57	277090		
	1	2.71	103.05	273069		
	2	3.26	102.74	272257		
	5	4.11	102.27	271005		
	10	4.81	101.88	269977		
	25	5.83	101.32	268484		
	50	6.70	100.84	267214		

		Rational I	Method Runo	ff Coefficent		
Project	2084 Brilla LL	С			В	y: DLF
ocation:	Bensalem Tov	vnship				e: 09/22/2023
Condition	Developed	1	POI	1A		
x imp credit	1.00		Discharge to	Seepage Bed		
awn x	1.05		Location	Site		
				Watershed Area	0.44	acres
Runoff Coef	fficent				0.0007	sq mi
					area	- 1
	Soil name	Cover	Description	"C"	Area	"C" x Area
	Connanio			J J	acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.26		
total in acres	A	Meadow		0.16		
	A	Woods		0.10		
	В	Impervious		0.96	0.27	0.26
soil group	В	Turf		0.36	0.17	0.06
total in acres	В	Meadow		0.22		
0.44	В	Woods		0.11		
.,	C	Impervious		0.96		
soil group	С	Turf		0.53		
total in acres	C C	Meadow Woods		0.28		
	D	Impervious		0.10		
soil group	D	Turf		0.53		
total in acres	D	Meadow		0.33		
	D	Woods		0.10		
		1		Total	0.440	0.32
			C	0.73	61.36%	Impervious
	Runoff Volume	20	0	- 0.75	01.5070	Impervious
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		68.27	109047		
	EISA		68.27	109047		
	1	2.71	66.76	106629		
	2	3.26	66.46	106142		
	5	4.11	65.99	105393		
	10	4.81	65.60	104778		
	25	5.83	65.04	103886		
	50	6.70	64.57	103129		
	100	7.63	64.06	102324		

		Rational I	Method Rund	off Coefficent		
Project	2084 Brilla LL				B	
_ocation:	Bensalem Tov	vnship			Date	e: 09/22/2023
		-				
Condition	Developed		POI	<u>1A</u>		
Ex imp credit	1.00		Discharge to	Seepage Bed		
_awn x	1.00		Location	Offsite		
	-			Watershed Area	0.75	acres
Runoff Coef	ficent				0.0012	sq mi
	Soil name	Cover	Description	"C"	Area	"C" x Area
					acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.25		
total in acres	A	Meadow		0.16		
	A	Woods		0.10		
	В	Impervious		0.96	0.15	0.14
soil group	В	Turf		0.34	0.60	0.20
total in acres	В	Meadow		0.22		
0.75	В	Woods		0.11		
	С	Impervious		0.96		
soil group	С	Turf		0.50		
total in acres	С	Meadow		0.28		
	С	Woods		0.10		
	D	Impervious		0.96		
soil group	D	Turf Meadow		0.50		_
total in acres	D D	Woods		0.20		
	D	WOOUS		0.10 Total	0.75	0.35
					0.75	0.35
			C	= 0.46	20.00%	Impervious
	Runoff Volume					
	Storm	Rainfall	Runoff	Volume		
	<u> </u>	in	in 107.26	<u>cf</u>		
	MDE		107.26	292012		
	EISA	0.74	107.26	292012		
	1 2	2.71 3.26	105.74 105.43	287880 287046		
	2 5	3.20 4.11	105.43			
	5 10	4.11 4.81	104.96	285759 284703		
	25	5.83	104.01	283167		
	23 50	6.70	103.53	281862		
	100	7.63	103.02	280471		

	Rational Method Runo	ff Coefficent		
2084 Brilla LLC	;		By:	DLF
Bensalem Tow	nship		Date:	09/22/2023
Developed	POI	1		
1.00	Discharge to	Bypass		
1.05	Location	Site		
		Watershed Area	0.16	acres
icent			0.0003	sq mi
Soil name	Cover Description	"C"	Area	"C" x Area

	Soil name	Cover Description	"C"	Area	"C" x Area
		• •	•	acres	acres
	А	Impervious	0.96		
soil group	А	Turf	0.26		
total in acres	А	Meadow	0.16		
	А	Woods	0.10		
	В	Impervious	0.96	0.07	0.07
soil group	В	Turf	0.36	0.09	0.03
total in acres	В	Meadow	0.22		
0.16	В	Woods	0.11		
	С	Impervious	0.96		
soil group	С	Turf	0.53		
total in acres	С	Meadow	0.28		
	С	Woods	0.10		
	D	Impervious	0.96		
soil group	D	Turf	0.53		
total in acres	D	Meadow	0.20		
	D	Woods	0.10		
			Total	0.16	0.10

Project Location:

Condition

Ex imp credit Lawn x

Runoff Coefficent

Runoff Volume	s			
Storm	Rainfall	Runoff	Volume	
yr	in	in	cf	
MDE		80.04	46487	
EISA		80.04	46487	
1	2.71	78.52	45607	
2	3.26	78.22	45429	
5	4.11	77.75	45156	
10	4.81	77.36	44932	
25	5.83	76.80	44606	
50	6.70	76.33	44330	
100	7.63	75.82	44035	

Condition Developed POI 1 Ex imp credit 1.00 Discharge to Bypass Lawn x 1.00 Location Offsite Watershed Area 0.11 acres Runoff Coefficent Cover Description "C" Soil name Cover Description "C" A Impervious 0.96 soil group A Turf 0.25	DLF 09/22/2023
Location: Bensalem Township Date: O Condition Developed POI 1 Ex imp credit 1.00 Discharge to Bypass Lawn x 1.00 Location Offsite Runoff Coefficent Vatershed Area 0.11 acres Soil name Cover Description "C" Area acres 0.96 1 soil group A Turf 0.25	
Condition Developed POI 1 Ex imp credit 1.00 Discharge to Bypass Lawn x 1.00 Location Offsite Watershed Area 0.11 acres Runoff Coefficent Cover Description "C" Soil name Cover Description "C" A Impervious 0.96 soil group A Turf 0.25	09/22/2023
Ex imp credit 1.00 Discharge to Bypass Lawn x 1.00 Location Offsite Runoff Coefficent Watershed Area 0.11 acres Soil name Cover Description "C" Area acres A Impervious 0.96 1 acres	
Lawn x 1.00 Location Offsite Watershed Area 0.11 ac 0.0002 sq Soil name Cover Description "C" Area A Impervious 0.96 Soil group A Turf 0.25	
Runoff Coefficent 0.0002 sq Soil name Cover Description "C" Area acres A Impervious 0.96 soil group A Turf 0.25	
A Impervious 0.96 soil group A Turf 0.25	pres a mi
A Impervious 0.96 soil group A Turf 0.25	"C" x Area
soil group A Turf 0.25	acres
Litetelin eeree A Meedew	
A Woods 0.10	
B Impervious 0.96 0.04	0.04
soil groupBTurf0.340.07total in acresBMeadow0.22	0.02
0.11 B Woods 0.11 C Impervious 0.96 1	
soil group C Turf 0.50	
total in acres C Meadow 0.28	
C Woods 0.10	
D Impervious 0.96	
soil group D Turf 0.50	
total in acres D Meadow 0.20	
D Woods 0.10	

		C=	0.57	36.36%	Impervious
Runoff Volume	es				
Storm	Rainfall	Runoff	Volume		
yr	in	in	cf		
MDE		87.92	35108		
EISA		87.92	35108		
1	2.71	86.41	34503		
2	3.26	86.10	34381		
5	4.11	85.63	34193		
10	4.81	85.24	34038		
25	5.83	84.68	33814		
50	6.70	84.21	33623		
100	7.63	83.70	33420		
100		00.10	00120		

Total

0.11

end page

0.06

		Rational M	lethod Rund	off Coefficent		
Project	2084 Brilla LL	С			В	y: DLF
_ocation:	Bensalem To	wnship			Date	e: 09/22/2023
Condition	Present	7	POI	2		
Ex imp credit	0.80		Discharge to	Property Line		
_awn x	1.00		Location	Site		
	1.00		Location	Watershed Area	0.41	acres
Runoff Coef	ficent			Watersneu Area	0.0006	sq mi
	Soil name	Cover [Description	"C"	Area	"C" x Area
			•		acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.25		
total in acres	A	Meadow		0.16		
	A	Woods		0.10		
	В	Impervious		0.96	0.04	0.04
soil group	В	Turf		0.34	0.23	0.08
total in acres	В	Meadow		0.22		_
0.41	В	Woods		0.11	0.14	0.01
	С	Impervious		0.96		
soil group	С	Turf		0.50		
total in acres	С	Meadow		0.28		
	С	Woods		0.10		
	D	Impervious		0.96		_
soil group total in acres	D	Turf Meadow		0.50		
lotar in acres	D D	Woods		0.20		
		Woods		Total	0.41	0.13
					0.41	0.13
			C	= 0.32	9.76%	Impervious
	Runoff Volum	es				
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		153.80	226671		
	EISA		153.80	226671		
	1	2.71	152.28	224431		
	2	3.26	151.98	223978		
	5	4.11	151.50	223279		
	10	4.81	151.11	222705		
	25	5.83	150.54	221869		
	50	6.70	150.06	221158		
	100	7.63	149.55	220400		

		Rational N	lethod Rund	off Coefficent		
Project	2084 Brilla LL	С			B	
ocation:	Bensalem To	wnship			Date	e: 09/22/2023
Condition	Present	7	POI	2		
Ex imp credit	1.00		Discharge to	Property Line		
.awn x	1.00		Location	Offsite		
				Watershed Area	1.52	acres
Runoff Coef	ficent			Watershed Area	0.0024	sq mi
	Soil name	Cover [Description	"C"	Area	"C" x Area
	·		· · · · · · · · · · · · · · · · · · ·		acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.25		
total in acres	A	Meadow		0.16		
	A	Woods		0.10		
	В	Impervious		0.96	0.32	0.31
soil group	В	Turf		0.34	1.09	0.37
total in acres	В	Meadow		0.22		
1.52	В	Woods		0.11	0.11	0.01
	С	Impervious		0.96		
soil group	С	Turf		0.50		
total in acres	С	Meadow		0.28		
	С	Woods		0.10		
	D	Impervious		0.96		
soil group	D	Turf		0.50		
total in acres	D	Meadow		0.20		
	D	Woods		0.10		
				Total	1.52	0.69
			С	= 0.45	21.05%	Impervious
	Runoff Volum					
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		109.66	605065		
	EISA	_	109.66	605065		
	1	2.71	108.14	596690		
	2	3.26	107.84	594999		
	5	4.11	107.36	592392		
	10	4.81	106.98	590250		
	25	5.83	106.41	587137		
	50	6.70	105.93	584490		
	100	7.63	105.42	581669		

		Rational I	Method Runo	ff Coefficent		
Project	2084 Brilla LL	С			B	y: DLF
Location:	Bensalem Tov				Date	
Looddon.	Defication For	Milonip			Dat	0. <u>00/22/2020</u>
Condition	Developed		POI	2		
Ex imp credit	1.00	_	Discharge to	Seepage Bed		
Lawn x	1.05		Location	Site		
				Watershed Area	0.09	acres
Runoff Coef	ficent				0.0001	sq mi
	Soil name	Cover	Description	"C"	Area	"C" x Area
		•		-	acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.26		
total in acres	A	Meadow		0.16		
	A	Woods		0.10		
	В	Impervious		0.96	0.07	0.07
soil group	В	Turf		0.36	0.02	0.01
total in acres	В	Meadow		0.22		
0.09	В	Woods		0.11		
	C	Impervious		0.96		
soil group	C	Turf		0.53		
total in acres	C	Meadow		0.28		
	С	Woods		0.10		
	D	Impervious		0.96		
soil group	D	Turf		0.53		
total in acres	D	Meadow		0.20		
	D	Woods		0.10		
Post Developme	ent multiplier	1.05	~	Total	0.09	0.07
	Runoff Volum	00	C	= 0.83	77.78%	Impervious
	Storm	es Rainfall	Runoff	Volume		
		in	in	cf		
	yr MDE	111	60.03	19613		
	EISA		60.03	19613		
	1	2.71	58.52	19119		
	2	3.26	58.22	19019		
	5	4.11	57.75	18866		
	10	4.11	57.36	18741		
	25	5.83	56.81	18559		
	50	6.70	56.34	18405		
	100	7.63	55.83	18241		

		Rational I	Method Rund	off Coefficent		
Project	2084 Brilla LL	C			В	y:DLF
Location:	Bensalem Tov	vnship			Date	e: 09/22/2023
Condition	Developed	7	POI	2		
Ex imp credit	1.00	4	Discharge to	Z Seepage Bed		
•	1.00		Location	Offsite		
Lawn x	1.00		Location		0.00	
	finant			Watershed Area	0.06	acres
Runoff Coef	licent				0.0001	sq mi
	Soil name	Cover	Description	"C"	Area	"C" x Area
			•		acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.25		
total in acres	A	Meadow		0.16		
	A	Woods		0.10		
	В	Impervious		0.96		
soil group	В	Turf		0.34		
total in acres	В	Meadow		0.22		
0.06	В	Woods		0.11	0.06	0.01
	С	Impervious		0.96		
soil group	С	Turf		0.50		
total in acres	С	Meadow		0.28		
	С	Woods		0.10		
	D	Impervious		0.96		
soil group	D	Turf		0.50		
total in acres	D	Meadow		0.20		
	D	Woods		0.10		
				Total	0.06	0.01
			C	= 0.11		Impervious
	Runoff Volume		F "			
	Storm	Rainfall	Runoff	Volume		
	yr	in	in 454.05	Cf		
	MDE		454.05	98891		
	EISA	0.74	454.05	98891		
	1	2.71	452.52	98559		
	2	3.26	452.21	98492		
	5	4.11	451.74	98388		
	10	4.81	451.34	98303		
	25 50	5.83	450.77	98178		
	50 100	6.70 7.63	450.29 449.77	98072 97959		

93 of 293

		Rational N	Method Rund	off Coefficent		
Project	2084 Brilla LL	С			B	y: DLF
Location:	Bensalem To				Date	·
		·····				
Condition	Developed		POI	2		
Ex imp credit	1.00		Discharge to	Bypass		
Lawn x	1.05		Location	Site		
				Watershed Area	0.20	acres
Runoff Coef	ficent				0.0003	sq mi
	Soil name	Cover I	Description	"C"	Area	"C" x Area
	·		•		acres	acres
	A	Impervious		0.96		
soil group	Α	Turf		0.26		
total in acres	Α	Meadow		0.16		
	A	Woods		0.10		
	В	Impervious		0.96	0.07	0.07
soil group	В	Turf		0.36	0.13	0.05
total in acres	В	Meadow		0.22		
0.20	В	Woods		0.11		
	С	Impervious		0.96		
soil group	C	Turf		0.53		
total in acres	С	Meadow		0.28		
	С	Woods		0.10		
	D	Impervious		0.96		
soil group	D	Turf		0.53		
total in acres	D	Meadow		0.20		
	D	Woods		0.10		
				Total	0.20	0.11
	Runoff Volum	05	C	= 0.57	35.00%	Impervious
	Storm	Rainfall	Runoff	Volume		
	vr	in	in	cf		
	MDE		87.52	63540		
	EISA		87.52	63540		
	1	2.71	86.00	62439		
	2	3.26	85.70	62217		
	5	4.11	85.23	61875		
	10	4.81	84.84	61594		
	25	5.83	84.28	61186		
	50	6.70	83.80	60840		
	100	7.63	83.29	60471		

Rational Method Runo	off Coefficent	
		By:DLF
ship		Date: 09/22/2023
POI	2	
Discharge to	Bypass	

1.35

0.0021

acres

sq mi

Runoff Coefficent

2084 Brilla LLC

Developed

1.00

1.00

Bensalem Township

Project

Location:

Condition

Lawn x

Ex imp credit

	Soil name	Cover Description	"C"	Area	"C" x Area
		•		acres	acres
	А	Impervious	0.96		
soil group	А	Turf	0.25		
total in acres	А	Meadow	0.16		
	А	Woods	0.10	acres	
	В	Impervious	0.96	0.32	0.31
soil group	В	Turf	0.34	0.97	0.33
total in acres	В	Meadow	0.22		
1.35	В	Woods	0.11	0.06	0.01
	С	Impervious	0.96		
soil group	С	Turf	0.50		
total in acres	С	Meadow	0.28		
	С	Woods	0.10		
	D	Impervious	0.96		
soil group	D	Turf	0.50		
total in acres	D	Meadow	0.20		
	D	Woods	0.10	acres	
		•	Total	1.35	0.64

Location

Offsite

Watershed Area

impervious= 23 percent of area of Lot 4

Runoff Volume				Impervious
	-			
Storm	Rainfall	Runoff	Volume	
yr	in	in	cf	
MDE		104.38	511508	
EISA		104.38	511508	
1	2.71	102.86	504072	
2	3.26	102.55	502571	
5	4.11	102.08	500256	
10	4.81	101.69	498355	
25	5.83	101.13	495593	
50	6.70	100.65	493245	
100	7.63	100.14	490742	

		Rational N	lethod Runo	off Coefficent		
Project	2084 Brilla LL	С			B	y: DLF
_ocation:	Bensalem Tov	wnship			Date	e: 09/22/2023
Condition	Developed	7	POI	1B		
Ex imp credit	1.00		Discharge to	Seepage Bed		
_x imp credit _awn x	1.05		Location	Site		
	1.05		Location	Watershed Area	0.27	0.0700
Runoff Coef	ficent			watersned Area	0.27	acres sq mi
	Soil name	Cover [Description	"C"	Area	"C" x Area
					acres	acres
	A	Impervious		0.96		
soil group	A	Turf		0.26		
total in acres	A	Meadow		0.16		
	A	Woods		0.10		
	В	Impervious		0.96	0.26	0.25
soil group	В	Turf		0.36	0.01	0.00
total in acres	В	Meadow		0.22		
0.27	В	Woods		0.11		
	С	Impervious		0.96		
soil group	С	Turf		0.53		_
total in acres	C C	Meadow Woods		0.28		
				0.96		
soil group	D	Impervious Turf		0.53		
total in acres	D	Meadow		0.33		
	D	Woods		0.10		
		110003		Total	0.27	0.25
Post Developme	ent multiplier	1.05			0.21	0.20
·	-		C	= 0.94	96.30%	Impervious
	Runoff Volum					
	Storm	Rainfall	Runoff	Volume		
	yr	in	in	cf		
	MDE		52.82	51773		
	EISA	0.74	52.82	51773		
	1	2.71	51.31	50292		
	2	3.26	51.01	49995		
	5 10	4.11 4.81	50.54 50.16	49537 49163		
	25	5.83	49.61	49163		
	25 50	6.70	49.01	48020		

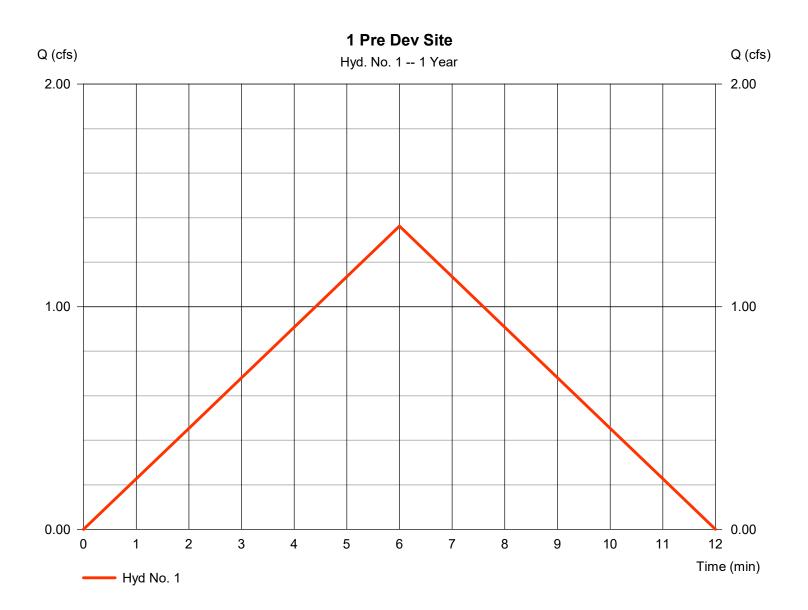
Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

96 of 293

lyd. No.	Hydrograph	Inflow				Peak Out	tflow (cfs)				Hydrograph
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	Mod. Rational		1.362	1.619		1.914	2.122	2.370	2.548	2.715	1 Pre Dev Site
2	Mod. Rational		1.449	1.722		2.036	2.257	2.521	2.710	2.889	1 Pre Dev Off Site
3	Combine	1, 2	2.811	3.341		3.950	4.379	4.892	5.258	5.604	1 Pre Dev Total ****
4	Mod. Rational		1.241	1.475		1.744	1.933	2.160	2.322	2.474	1A Post Dev Site
5	Mod. Rational		1.333	1.584		1.873	2.076	2.320	2.494	2.658	1A Post Dev Off Site
6	Combine	4, 5	2.574	3.059		3.617	4.010	4.480	4.815	5.132	1A Post Dev Controlled Total
7	Reservoir	6	0.000	0.000		0.000	0.000	0.000	0.000	0.000	Seepage Bed 1A
8	Mod. Rational		0.981	1.165		1.378	1.528	1.707	1.834	1.955	1B Post Dev Site
9	Combine	7, 8	0.981	1.165		1.378	1.528	1.707	1.834	1.955	1B Post Dev Controlled Total
10	Reservoir	9	0.229	0.307		0.403	0.467	0.549	0.610	0.666	Seepage Bed 1B
11	Mod. Rational		0.383	0.456		0.539	0.597	0.667	0.717	0.764	1 Post Dev Site Bypass
12	Mod. Rational		0.242	0.288		0.340	0.377	0.422	0.453	0.483	1 Post Dev Off Site Bypass
13	Combine	10, 11, 12	0.716	0.868		1.050	1.182	1.343	1.460	1.572	1 Post Dev Total ****
15	Mod. Rational		0.484	0.576		0.682	0.757	0.846	0.910	0.969	2 Pre Dev Site
16	Mod. Rational		2.523	3.001		3.556	3.946	4.409	4.742	5.054	2 Pre Dev Off Site
17	Combine	15, 16	3.007	3.577		4.239	4.703	5.255	5.651	6.024	2 Pre Dev Total ****
18	Mod. Rational		0.289	0.343		0.406	0.450	0.502	0.540	0.575	2 Post Dev Site
19	Mod. Rational		0.025	0.030		0.036	0.040	0.044	0.048	0.051	2 Post Dev Off Site
20	Combine	18, 19	0.314	0.373		0.441	0.489	0.547	0.588	0.626	2 Post Dev Controlled Total
21	Reservoir	20	0.095	0.109		0.124	0.133	0.144	0.151	0.158	Seepage Bed 2
22	Mod. Rational		0.440	0.523		0.619	0.686	0.767	0.824	0.878	2 Post Dev Site Bypass
23	Mod. Rational		2.503	2.976		3.518	3.900	4.357	4.684	4.992	2 Post Dev Off Site Bypass
24	Combine	21, 22, 23	2.999	3.569		4.220	4.677	5.224	5.613	5.981	2 Post Dev Total ****
⊃ro	j. file: 301 Wa	atersheds	2084 RI	M.gpw					Fri	day, 09 /	22 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

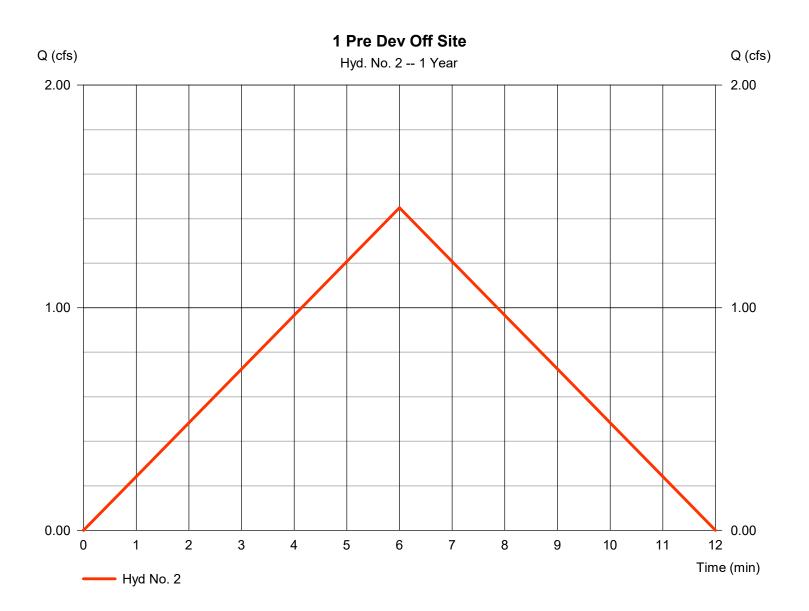

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Mod. Rational	1.362	1	6	490				1 Pre Dev Site
2	Mod. Rational	1.449	1	6	522				1 Pre Dev Off Site
3	Combine	2.811	1	6	1,012	1, 2			1 Pre Dev Total ****
4	Mod. Rational	1.241	1	6	447				1A Post Dev Site
5	Mod. Rational	1.333	1	6	480				1A Post Dev Off Site
6	Combine	2.574	1	6	927	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.000	1	889	0	6	126.78	915	Seepage Bed 1A
8	Mod. Rational	0.981	1	6	353				1B Post Dev Site
9	Combine	0.981	1	6	353	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.229	1	10	184	9	127.27	255	Seepage Bed 1B
11	Mod. Rational	0.383	1	6	138				1 Post Dev Site Bypass
12	Mod. Rational	0.242	1	6	87				1 Post Dev Off Site Bypass
13	Combine	0.716	1	6	409	10, 11, 12			1 Post Dev Total ****
15	Mod. Rational	0.484	1	7	203				2 Pre Dev Site
16	Mod. Rational	2.523	1	7	1,060				2 Pre Dev Off Site
17	Combine	3.007	1	7	1,263	15, 16			2 Pre Dev Total ****
18	Mod. Rational	0.289	1	6	104				2 Post Dev Site
19	Mod. Rational	0.025	1	6	9				2 Post Dev Off Site
20	Combine	0.314	1	6	113	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.095	1	10	107	20	108.29	82.3	Seepage Bed 2
22	Mod. Rational	0.440	1	6	159				2 Post Dev Site Bypass
23	Mod. Rational	2.503	1	6	901				2 Post Dev Off Site Bypass
24	Combine	2.999	1	6	1,167	21, 22, 23			2 Post Dev Total ****
301	Watersheds	2084 RM	l.gpw		Return	Period: 1 Ye	ear	Friday, 09	/ 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

d. Rational Peak disc	charge = 1.362 cfs
rs Time to p	eak = 6 min
in Hyd. volu	me = 490 cuft
50 ac Runoff co	eff. = 0.47
53 in/hr Tc by Use	er = 6.00 min
Doylestown.IDF Storm du	ration = 1.0 x Tc
Est. Req'	d Storage =n/a
	s Time to p in Hyd. volu 50 ac Runoff cc 63 in/hr Tc by Use Doylestown.IDF Storm du

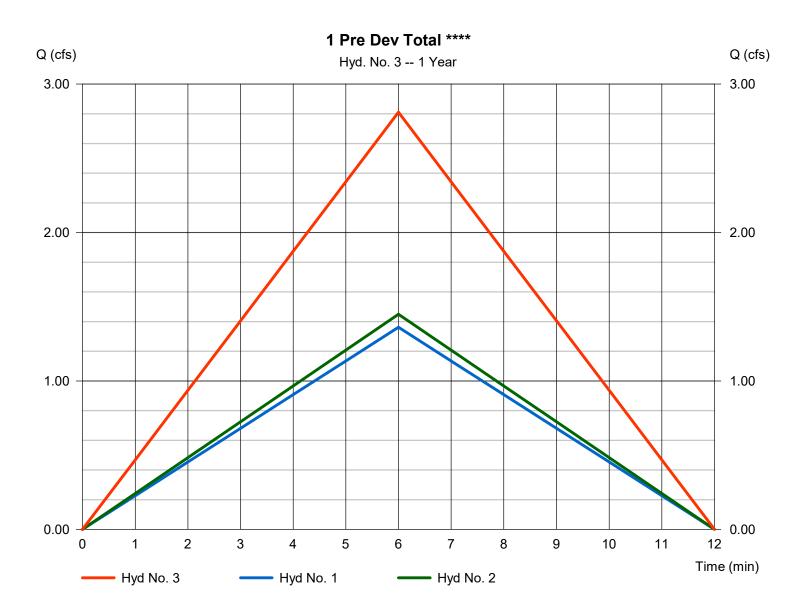


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

1 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.449 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 522 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.5
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

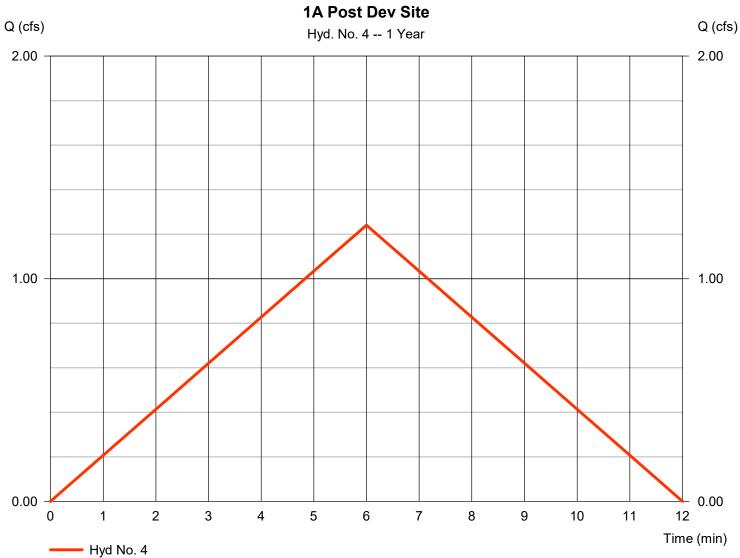


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 2.811 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,012 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 1.500 ac
-			

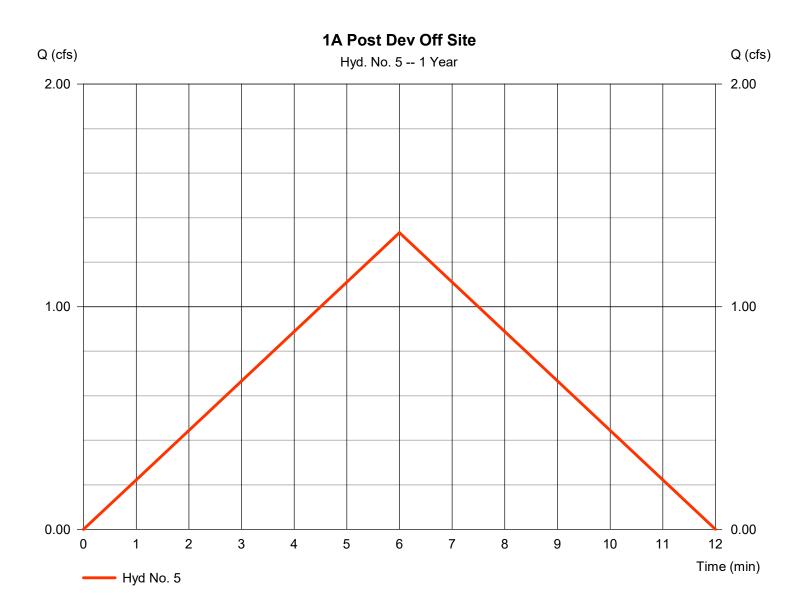


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.241 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 447 cuft
Drainage area	= 0.440 ac	Runoff coeff.	= 0.73
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

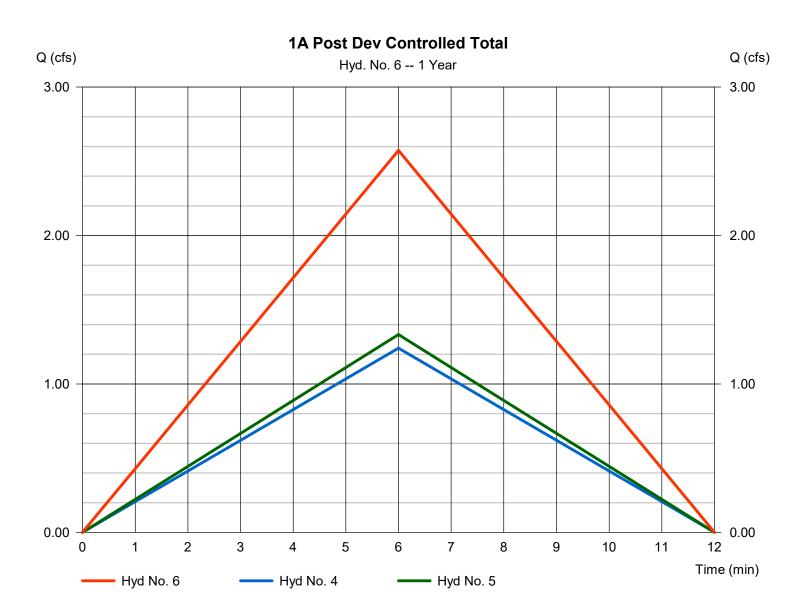


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.333 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 480 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.46
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

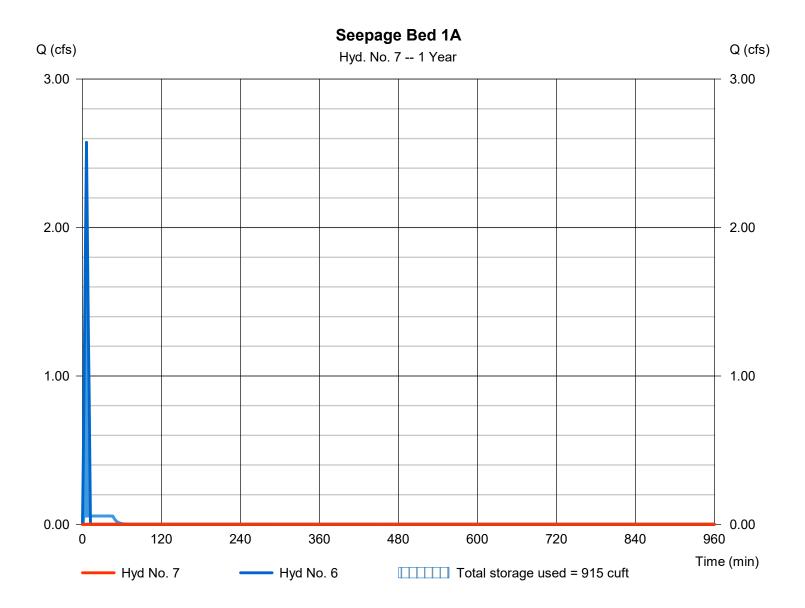


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 2.574 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 927 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 1.190 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	 Reservoir 1 yrs 1 min 6 - 1A Post Dev Controlled T 	Peak discharge	= 0.000 cfs
Storm frequency		Time to peak	= 889 min
Time interval		Hyd. volume	= 0 cuft
Inflow hyd, No.		otMax. Elevation	= 126.78 ft
Inflow hyd. No.	= 6 - 1A Post Dev Controlled T= Seepage Bed 1A	ot a lax. Elevation	= 126.78 ft
Reservoir name		Max. Storage	= 915 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 1 - Seepage Bed 1A

Pond Data

UG Chambers -Invert elev. = 126.25 ft, Rise x Span = 1.00×1.00 ft, Barrel Len = 72.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 126.00 ft, Width = 40.00 ft, Height = 2.00 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	126.00	n/a	0	0
0.20	126.20	n/a	230	230
0.40	126.40	n/a	234	464
0.60	126.60	n/a	238	702
0.80	126.80	n/a	239	941
1.00	127.00	n/a	239	1,180
1.20	127.20	n/a	236	1,416
1.40	127.40	n/a	231	1,647
1.60	127.60	n/a	230	1,878
1.80	127.80	n/a	230	2,108
2.00	128.00	n/a	230	2,338

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	8.00	0.00	Inactive	Crest Len (ft)	= 4.71	Inactive	Inactive	Inactive
Span (in)	= 18.00	8.00	0.00	0.00	Crest El. (ft)	= 129.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.32	3.32	3.33	3.33
Invert El. (ft)	= 126.75	127.60	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 123.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.70	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.250 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

etage,	eterage / -	sieenange .											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	126.00	0.00	0.00			0.00	0.00			0.000		0.000
0.02	23	126.02	0.00	0.00			0.00	0.00			0.017		0.017
0.04	46	126.04	0.00	0.00			0.00	0.00			0.017		0.017
0.06	69	126.06	0.00	0.00			0.00	0.00			0.017		0.017
0.08	92	126.08	0.00	0.00			0.00	0.00			0.017		0.017
0.10	115	126.10	0.00	0.00			0.00	0.00			0.017		0.017
0.12	138	126.12	0.00	0.00			0.00	0.00			0.017		0.017
0.14	161	126.14	0.00	0.00			0.00	0.00			0.017		0.017
0.16	184	126.16	0.00	0.00			0.00	0.00			0.017		0.017
0.18	207	126.18	0.00	0.00			0.00	0.00			0.017		0.017
0.20	230	126.20	0.00	0.00			0.00	0.00			0.017		0.017
0.22	254	126.22	0.00	0.00			0.00	0.00			0.017		0.017
0.24	277	126.24	0.00	0.00			0.00	0.00			0.017		0.017
0.26	301	126.26	0.00	0.00			0.00	0.00			0.017		0.017
0.28	324	126.28	0.00	0.00			0.00	0.00			0.017		0.017
0.30	347	126.30	0.00	0.00			0.00	0.00			0.017		0.017
0.32	371	126.32	0.00	0.00			0.00	0.00			0.017		0.017
0.34	394	126.34	0.00	0.00			0.00	0.00			0.017		0.017
0.36	417	126.36	0.00	0.00			0.00	0.00			0.017		0.017
0.38	441	126.38	0.00	0.00			0.00	0.00			0.017		0.017
0.40	464	126.40	0.00	0.00			0.00	0.00			0.017		0.017
0.42	488	126.42	0.00	0.00			0.00	0.00			0.017		0.017
0.44	512	126.44	0.00	0.00			0.00	0.00			0.017		0.017
0.46	535	126.46	0.00	0.00			0.00	0.00			0.017		0.017
0.48	559	126.48	0.00	0.00			0.00	0.00			0.017		0.017
0.50	583	126.50	0.00	0.00			0.00	0.00			0.017		0.017
0.52	607	126.52	0.00	0.00			0.00	0.00			0.017		0.017
0.54	631	126.54	0.00	0.00			0.00	0.00			0.017		0.017
0.56	654	126.56	0.00	0.00			0.00	0.00			0.017		0.017
0.58	678	126.58	0.00	0.00			0.00	0.00			0.017		0.017
0.60	702	126.60	0.00	0.00			0.00	0.00			0.017		0.017
0.62	726	126.62	0.00	0.00			0.00	0.00			0.017		0.017
											Continue	s on nev	tnare

Continues on next page ...

106 of 293

Seepage Bed 1A Stage / Storage / Discharge Table

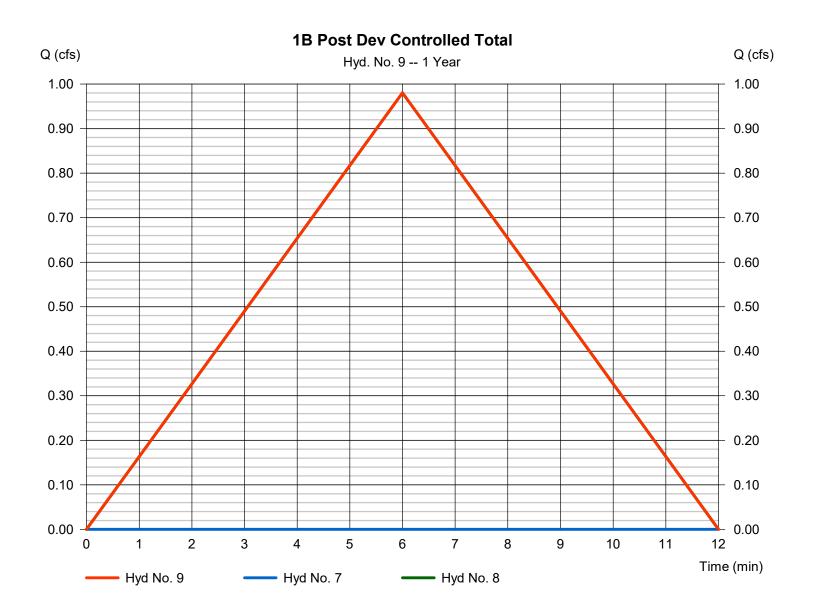
Stage /	Storage / I	Discharge	lable										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.64	750	126.64	0.00	0.00			0.00	0.00			0.017		0.017
0.66	700	126.66	0.00	0.00			0.00	0.00			0.017		0.017
0.68	798	126.68	0.00	0.00			0.00	0.00			0.017		0.017
0.70	821	126.70	0.00	0.00			0.00	0.00			0.017		0.017
0.72	845	126.72	0.00	0.00			0.00	0.00			0.017		0.017
0.74	869	126.74	0.00	0.00			0.00	0.00			0.017		0.017
0.76	893	126.76	0.00	0.00			0.00	0.00			0.017		0.017
0.78	917	126.78	0.00	0.00			0.00	0.00			0.017		0.017
0.80 0.82	941 965	126.80 126.82	0.00 0.00	0.00 0.00			0.00 0.00	0.00 0.00			0.017 0.017		0.017 0.017
0.82	989	126.84	0.00	0.00			0.00	0.00			0.017		0.017
0.86	1,012	126.86	0.00	0.00			0.00	0.00			0.017		0.017
0.88	1,036	126.88	0.00	0.00			0.00	0.00			0.017		0.017
0.90	1,060	126.90	0.00	0.00			0.00	0.00			0.017		0.017
0.92	1,084	126.92	0.00	0.00			0.00	0.00			0.017		0.017
0.94	1,108	126.94	0.00	0.00			0.00	0.00			0.017		0.017
0.96	1,132	126.96	0.00	0.00			0.00	0.00			0.017		0.017
0.98	1,156	126.98	0.00	0.00			0.00	0.00			0.017		0.017
1.00	1,180	127.00	0.00	0.00			0.00	0.00			0.017		0.017
1.02	1,203	127.02	0.00	0.00			0.00	0.00			0.018		0.018
1.04 1.06	1,227 1,250	127.04 127.06	0.00 0.00	0.00 0.00			0.00 0.00	0.00 0.00			0.018 0.018		0.018 0.018
1.08	1,250	127.08	0.00	0.00			0.00	0.00			0.018		0.018
1.10	1,298	127.10	0.00	0.00			0.00	0.00			0.018		0.018
1.12	1,321	127.10	0.00	0.00			0.00	0.00			0.018		0.018
1.14	1,345	127.14	0.00	0.00			0.00	0.00			0.018		0.018
1.16	1,369	127.16	0.00	0.00			0.00	0.00			0.018		0.018
1.18	1,392	127.18	0.00	0.00			0.00	0.00			0.018		0.018
1.20	1,416	127.20	0.00	0.00			0.00	0.00			0.018		0.018
1.22	1,439	127.22	0.00	0.00			0.00	0.00			0.018		0.018
1.24	1,462	127.24	0.00	0.00			0.00	0.00			0.018		0.018
1.26	1,485	127.26	0.00	0.00			0.00	0.00			0.018		0.018
1.28	1,508	127.28	0.00 0.00	0.00 0.00			0.00	0.00 0.00			0.018 0.018		0.018
1.30 1.32	1,532 1,555	127.30 127.32	0.00	0.00			0.00 0.00	0.00			0.018		0.018 0.018
1.32	1,555	127.32	0.00	0.00			0.00	0.00			0.018		0.018
1.34	1,601	127.34	0.00	0.00			0.00	0.00			0.018		0.018
1.38	1,624	127.38	0.00	0.00			0.00	0.00			0.018		0.018
1.40	1,647	127.40	0.00	0.00			0.00	0.00			0.018		0.018
1.42	1,670	127.42	0.00	0.00			0.00	0.00			0.018		0.018
1.44	1,693	127.44	0.00	0.00			0.00	0.00			0.018		0.018
1.46	1,716	127.46	0.00	0.00			0.00	0.00			0.018		0.018
1.48	1,739	127.48	0.00	0.00			0.00	0.00			0.018		0.018
1.50	1,762	127.50	0.00	0.00			0.00	0.00			0.018		0.018
1.52	1,785	127.52	0.00	0.00			0.00	0.00			0.018		0.018
1.54 1.56	1,808 1,831	127.54 127.56	0.00 0.00	0.00 0.00			0.00 0.00	0.00 0.00			0.018 0.018		0.018 0.018
1.58	1,854	127.58	0.00	0.00			0.00	0.00			0.018		0.018
1.60	1,878	127.60	0.00	0.00			0.00	0.00			0.018		0.018
1.62	1,901	127.62	0.00 ic	0.00 ic			0.00	0.00			0.018		0.020
1.64	1,924	127.64	0.01 ic	0.01 ic			0.00	0.00			0.018		0.024
1.66	1,947	127.66	0.01 ic	0.01 ic			0.00	0.00			0.018		0.031
1.68	1,970	127.68	0.03 ic	0.02 ic			0.00	0.00			0.018		0.042
1.70	1,993	127.70	0.04 ic	0.04 ic			0.00	0.00			0.018		0.054
1.72	2,016	127.72	0.05 ic	0.05 ic			0.00	0.00			0.018		0.069
1.74	2,039	127.74	0.07 ic	0.07 ic			0.00	0.00			0.018		0.087
1.76	2,062	127.76	0.09 ic	0.09 ic			0.00	0.00			0.018		0.109
1.78 1.80	2,085 2,108	127.78 127.80	0.12 ic 0.14 ic	0.11 ic 0.13 ic			0.00 0.00	0.00 0.00			0.018 0.018		0.130 0.153
1.82	2,100	127.82	0.14 ic	0.16 ic			0.00	0.00			0.018		0.179
1.84	2,154	127.84	0.20 ic	0.19 ic			0.00	0.00			0.018		0.207
1.86	2,177	127.86	0.22 ic	0.22 ic			0.00	0.00			0.018		0.238
1.88	2,200	127.88	0.25 ic	0.25 ic			0.00	0.00			0.018		0.270
1.90	2,223	127.90	0.29 ic	0.29 ic			0.00	0.00			0.018		0.305
1.92	2,246	127.92	0.33 ic	0.32 ic			0.00	0.00			0.018		0.341
1.94	2,269	127.94	0.36 ic	0.36 ic			0.00	0.00			0.018		0.379
1.96	2,292	127.96	0.41 ic	0.40 ic			0.00	0.00			0.018		0.417
1.98	2,315	127.98	0.43 ic	0.43 ic			0.00	0.00			0.018		0.450
2.00	2,338	128.00	0.49 ic	0.47 ic			0.00	0.00			0.018		0.491

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.981 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 353 cuft
Drainage area	= 0.270 ac	Runoff coeff.	= 0.94
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

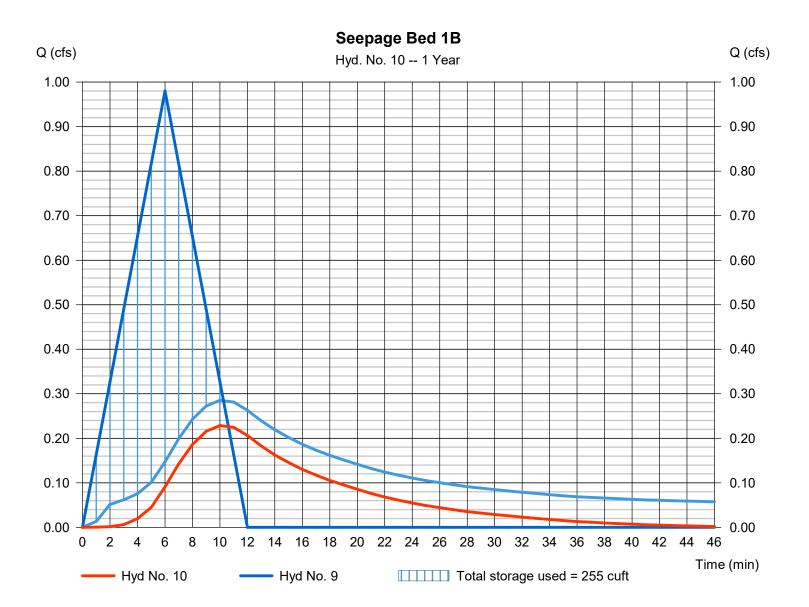


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 0.981 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 353 cuft
Inflow hyds.	= 7,8	Contrib. drain. area	= 0.270 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 1 yrs 1 min 9 - 1B Post Dev Controlled To 		= 0.229 cfs = 10 min = 184 cuft = 127.27 ft
Reservoir name	= Seepage Bed 1B	Max. Storage	= 255 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

109 of 293

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 2 - Seepage Bed 1B

Pond Data

UG Chambers -Invert elev. = 127.50 ft, Rise x Span = 1.00×1.00 ft, Barrel Len = 96.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 127.00 ft, Width = 25.00 ft, Height = 2.00 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	127.00	n/a	0	0
0.20	127.20	n/a	192	192
0.40	127.40	n/a	192	384
0.60	127.60	n/a	194	578
0.80	127.80	n/a	201	780
1.00	128.00	n/a	203	983
1.20	128.20	n/a	203	1,186
1.40	128.40	n/a	201	1,387
1.60	128.60	n/a	194	1,582
1.80	128.80	n/a	192	1,774
2.00	129.00	n/a	192	1,966

Culvert / Orifice Structures

Weir Structures

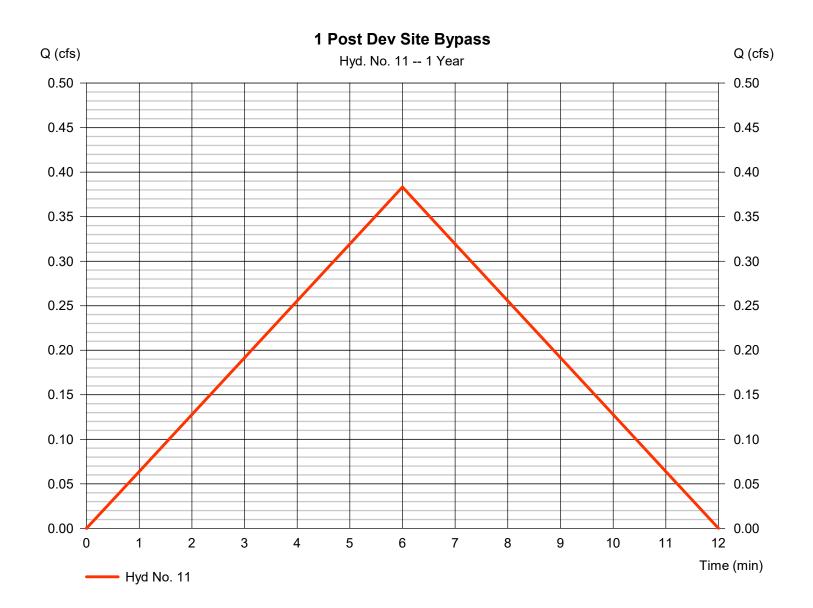
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	8.00	0.00	0.00	Crest Len (ft)	= 3.14	Inactive	Inactive	Inactive
Span (in)	= 18.00	8.00	0.00	0.00	Crest El. (ft)	= 129.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.32	3.32	3.33	3.33
Invert El. (ft)	= 126.40	127.00	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 24.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 5.24	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 1.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

- ange													
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	127.00	0.00	0.00			0.00	0.00			0.000		0.000
0.02	19	127.02	1.78 ic	0.00 ic			0.00	0.00			0.056		0.057
0.04	38	127.04	1.78 ic	0.01 ic			0.00	0.00			0.056		0.062
0.06	58	127.06	1.78 ic	0.01 ic			0.00	0.00			0.056		0.069
0.08	77	127.08	1.78 ic	0.02 ic			0.00	0.00			0.056		0.080
0.10	96	127.10	1.78 ic	0.04 ic			0.00	0.00			0.056		0.092
0.12	115	127.12	1.78 ic	0.05 ic			0.00	0.00			0.056		0.107
0.14	134	127.14	1.78 ic	0.07 ic			0.00	0.00			0.056		0.125
0.16	154	127.16	1.78 ic	0.09 ic			0.00	0.00			0.056		0.147
0.18	173	127.18	1.78 ic	0.11 ic			0.00	0.00			0.056		0.168
0.20	192	127.20	1.78 ic	0.13 ic			0.00	0.00			0.056		0.191
0.22	211	127.22	1.78 ic	0.16 ic			0.00	0.00			0.057		0.217
0.24	230	127.24	1.78 ic	0.19 ic			0.00	0.00			0.057		0.246
0.26	250	127.26	1.78 ic	0.22 ic			0.00	0.00			0.057		0.276
0.28	269	127.28	1.78 ic	0.25 ic			0.00	0.00			0.057		0.309
0.30	288	127.30	1.78 ic	0.29 ic			0.00	0.00			0.057		0.343
0.32	307	127.32	1.78 ic	0.32 ic			0.00	0.00			0.057		0.380
0.34	326	127.34	1.78 ic	0.36 ic			0.00	0.00			0.057		0.417
0.36	346	127.36	1.78 ic	0.40 ic			0.00	0.00			0.057		0.456
0.38	365	127.38	1.78 ic	0.43 ic			0.00	0.00			0.057		0.489
0.40	384	127.40	1.78 ic	0.47 ic			0.00	0.00			0.057		0.530
0.42	404	127.42	1.78 ic	0.51 ic			0.00	0.00			0.057		0.570
0.44	423	127.44	1.78 ic	0.55 ic			0.00	0.00			0.058		0.611
0.46	442	127.46	1.78 ic	0.59 ic			0.00	0.00			0.058		0.652
0.48	462	127.48	1.78 ic	0.64 ic			0.00	0.00			0.058		0.699
0.50	481	127.50	1.78 ic	0.68 ic			0.00	0.00			0.058		0.738
0.52	501	127.52	1.78 ic	0.72 ic			0.00	0.00			0.058		0.776
0.54	520	127.54	1.78 ic	0.76 ic			0.00	0.00			0.058		0.818
0.56	540	127.56	1.78 ic	0.80 ic			0.00	0.00			0.058		0.857
0.58	559	127.58	1.78 ic	0.84 ic			0.00	0.00			0.058		0.898
0.60	578	127.60	1.78 ic	0.88 ic			0.00	0.00			0.058		0.934
0.62	599	127.62	1.78 ic	0.91 ic			0.00	0.00			0.058		0.966

Continues on next page ...

Seepage Bed 1B Stage / Storage / Discharge Table

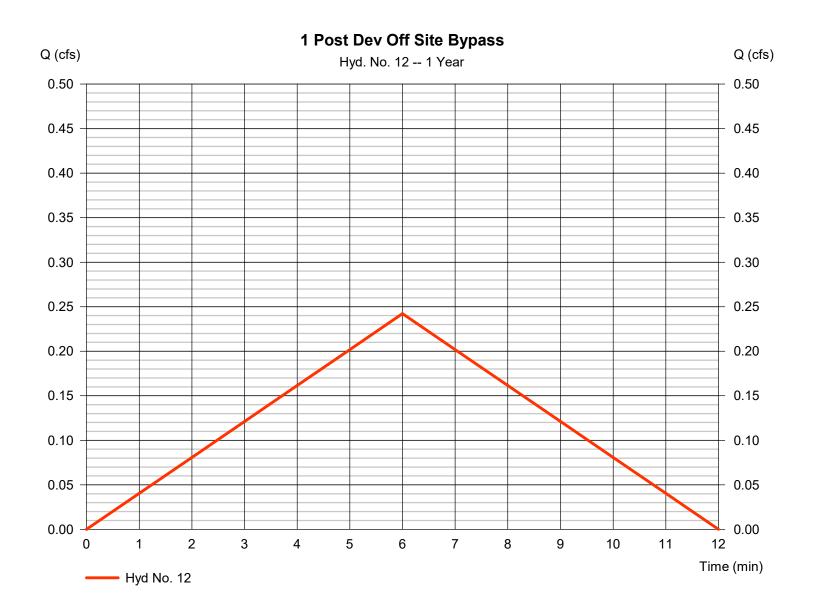

Stage /	Storage /	Discharge	lable										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.64	619	127.64	1.78 ic	0.94 ic			0.00	0.00			0.058		0.997
0.66	639	127.66	1.78 ic	0.96 ic			0.00	0.00			0.058		1.023
0.68	659	127.68	1.78 ic	0.99 ic			0.00	0.00			0.059		1.048
0.70	679	127.70	1.78 ic	1.02 ic			0.00	0.00			0.059		1.076
0.72	699	127.72	1.78 ic	1.04 ic			0.00	0.00			0.059		1.104
0.74	719	127.74	1.78 ic	1.07 ic			0.00	0.00			0.059		1.131
0.76	739	127.76	1.78 ic	1.10 ic			0.00	0.00			0.059		1.157
0.78	759	127.78	1.78 ic	1.12 ic			0.00	0.00			0.059		1.182
0.80	780 800	127.80	1.78 ic 1.78 ic	1.15 ic			0.00 0.00	0.00 0.00			0.059 0.059		1.207 1.232
0.82 0.84	820	127.82 127.84	1.78 ic	1.17 ic 1.20 ic			0.00	0.00			0.059		1.252
0.84	841	127.86	1.78 ic	1.20 ic			0.00	0.00			0.059		1.233
0.88	861	127.88	1.78 ic	1.24 ic			0.00	0.00			0.059		1.302
0.90	881	127.90	1.78 ic	1.27 ic			0.00	0.00			0.060		1.325
0.92	902	127.92	1.78 ic	1.29 ic			0.00	0.00			0.060		1.347
0.94	922	127.94	1.78 ic	1.31 ic			0.00	0.00			0.060		1.369
0.96	942	127.96	1.78 ic	1.33 ic			0.00	0.00			0.060		1.390
0.98	962	127.98	1.78 ic	1.35 ic			0.00	0.00			0.060		1.411
1.00	983	128.00	1.78 ic	1.37 ic			0.00	0.00			0.060		1.432
1.02	1,003	128.02	1.78 ic	1.39 ic			0.00	0.00			0.060		1.453
1.04	1,023	128.04	1.78 ic	1.41 ic			0.00	0.00			0.060		1.473
1.06	1,044	128.06	1.78 ic	1.43 ic			0.00	0.00			0.060		1.493
1.08	1,064	128.08	1.78 ic	1.45 ic			0.00	0.00			0.060		1.513
1.10	1,084	128.10	1.78 ic	1.47 ic			0.00	0.00			0.060		1.532
1.12	1,105	128.12	1.78 ic	1.49 ic			0.00	0.00			0.061		1.551
1.14	1,125	128.14	1.78 ic	1.51 ic			0.00	0.00			0.061		1.570
1.16	1,145	128.16	1.78 ic	1.53 ic			0.00	0.00			0.061		1.589
1.18	1,166	128.18	1.78 ic	1.55 ic			0.00	0.00			0.061		1.607
1.20 1.22	1,186 1,206	128.20 128.22	1.78 ic 1.78 ic	1.56 ic 1.58 ic			0.00 0.00	0.00 0.00			0.061 0.061		1.625 1.643
1.22	1,200	128.22	1.78 ic	1.60 ic			0.00	0.00			0.061		1.661
1.24	1,220	128.26	1.78 ic	1.62 ic			0.00	0.00			0.061		1.679
1.20	1,240	128.28	1.78 ic	1.64 ic			0.00	0.00			0.061		1.696
1.30	1,287	128.30	1.78 ic	1.65 ic			0.00	0.00			0.061		1.714
1.32	1,307	128.32	1.78 ic	1.67 ic			0.00	0.00			0.061		1.731
1.34	1,327	128.34	1.78 ic	1.69 ic			0.00	0.00			0.062		1.748
1.36	1,347	128.36	1.78 ic	1.70 ic			0.00	0.00			0.062		1.764
1.38	1,367	128.38	1.78 ic	1.72 ic			0.00	0.00			0.062		1.781
1.40	1,387	128.40	1.78 ic	1.74 ic			0.00	0.00			0.062		1.797
1.42	1,407	128.42	1.78 ic	1.75 ic			0.00	0.00			0.062		1.814
1.44	1,426	128.44	1.78 ic	1.77 ic			0.00	0.00			0.062		1.830
1.46	1,445	128.46	1.78 ic	1.78 ic			0.00	0.00			0.062		1.846
1.48	1,465	128.48	1.84 ic	1.80 ic			0.00	0.00			0.062		1.862
1.50	1,484	128.50	1.84 ic	1.82 ic			0.00	0.00			0.062		1.877
1.52	1,504	128.52	1.84 ic	1.83 ic			0.00	0.00			0.062		1.893
1.54	1,523	128.54	1.85 ic	1.85 ic			0.00	0.00			0.062		1.908
1.56	1,543	128.56	1.90 ic	1.86 ic			0.00	0.00			0.062		1.924
1.58 1.60	1,562 1,582	128.58 128.60	1.90 ic 1.90 ic	1.88 ic 1.89 ic			0.00 0.00	0.00 0.00			0.063 0.063		1.939 1.954
1.62	1,562	128.60	1.90 lc	1.89 lc 1.91 ic			0.00	0.00			0.063		1.969
1.64	1,620	128.64	1.97 ic	1.91 ic			0.00	0.00			0.063		1.984
1.66	1,639	128.66	1.97 ic	1.92 ic			0.00	0.00			0.063		1.999
1.68	1,658	128.68	1.97 ic	1.95 ic			0.00	0.00			0.063		2.013
1.70	1,678	128.70	1.97 ic	1.96 ic			0.00	0.00			0.063		2.028
1.72	1,697	128.72	1.98 ic	1.98 ic			0.00	0.00			0.063		2.042
1.74	1,716	128.74	2.03 ic	1.99 ic			0.00	0.00			0.063		2.056
1.76	1,735	128.76	2.03 ic	2.01 ic			0.00	0.00			0.063		2.071
1.78	1,754	128.78	2.03 ic	2.02 ic			0.00	0.00			0.063		2.085
1.80	1,774	128.80	2.04 ic	2.04 ic			0.00	0.00			0.064		2.099
1.82	1,793	128.82	2.10 ic	2.05 ic			0.00	0.00			0.064		2.113
1.84	1,812	128.84	2.10 ic	2.06 ic			0.00	0.00			0.064		2.127
1.86	1,831	128.86	2.10 ic	2.08 ic			0.00	0.00			0.064		2.140
1.88	1,850	128.88	2.10 ic	2.09 ic			0.00	0.00			0.064		2.154
1.90	1,870	128.90	2.10 ic	2.10 ic			0.00	0.00			0.064		2.167
1.92	1,889	128.92	2.16 ic	2.12 ic			0.00	0.00			0.064		2.181
1.94	1,908	128.94	2.16 ic	2.13 ic			0.00	0.00			0.064		2.194
1.96	1,927	128.96	2.16 ic	2.14 ic			0.00	0.00			0.064		2.208
1.98	1,946	128.98	2.16 ic	2.16 ic			0.00	0.00			0.064		2.221
2.00	1,966	129.00	2.17 ic	2.17 ic			0.00	0.00			0.064		2.234

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.383 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 138 cuft
Drainage area	= 0.160 ac	Runoff coeff.	= 0.62
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

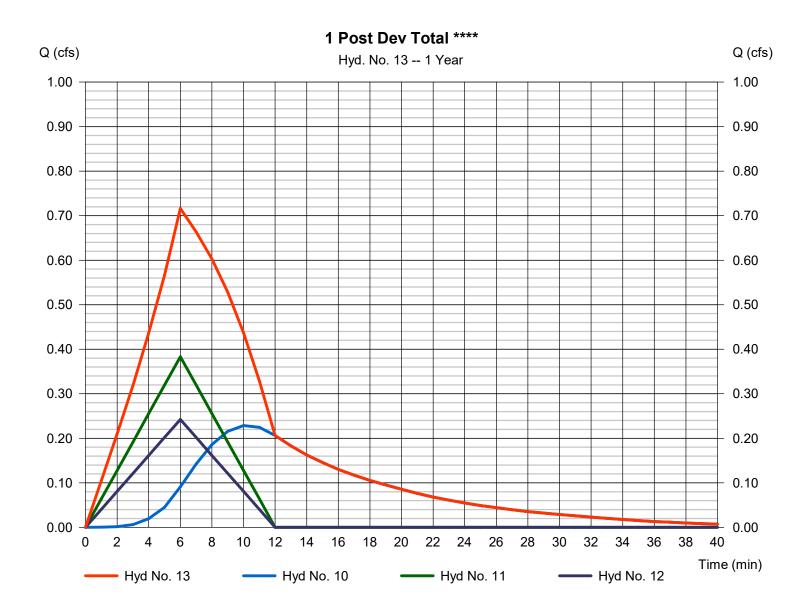


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.242 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 87 cuft
Drainage area	= 0.110 ac	Runoff coeff.	= 0.57
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

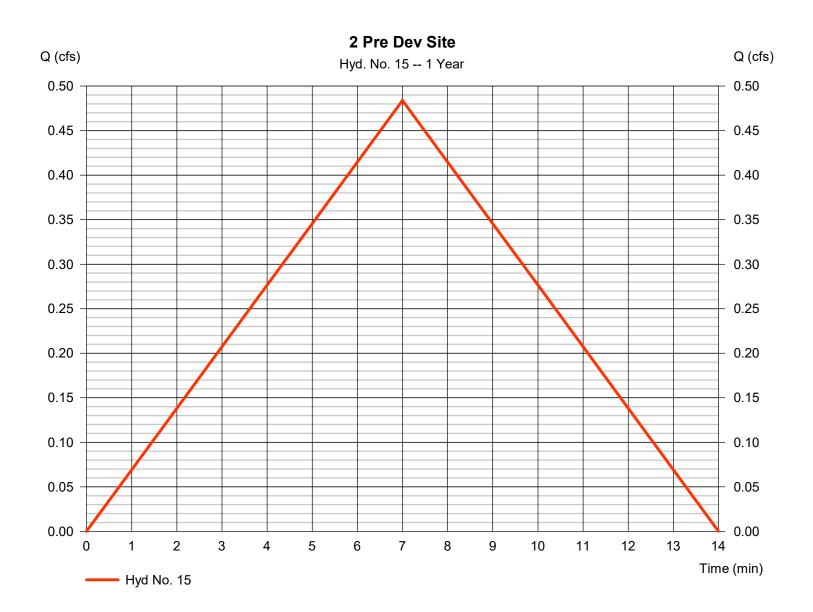

113 of 293

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 0.716 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 409 cuft
Inflow hyds.	= 10, 11, 12	Contrib. drain. area	= 0.270 ac
innerr nyae.	10, 11, 12		0.210 40

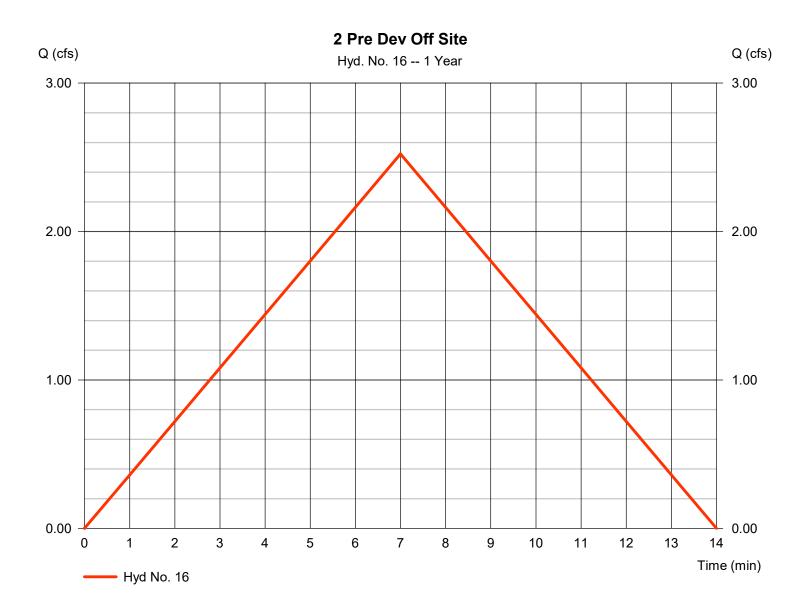


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.484 cfs
Storm frequency	= 1 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 203 cuft
Drainage area	= 0.410 ac	Runoff coeff.	= 0.32
Intensity	= 3.688 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

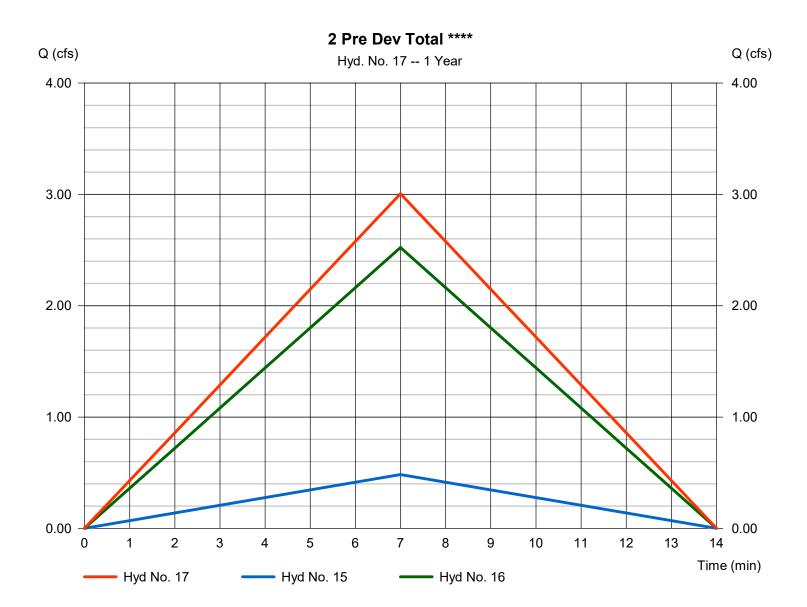


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.523 cfs
Storm frequency	= 1 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 1,060 cuft
Drainage area	= 1.520 ac	Runoff coeff.	= 0.45
Intensity	= 3.688 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

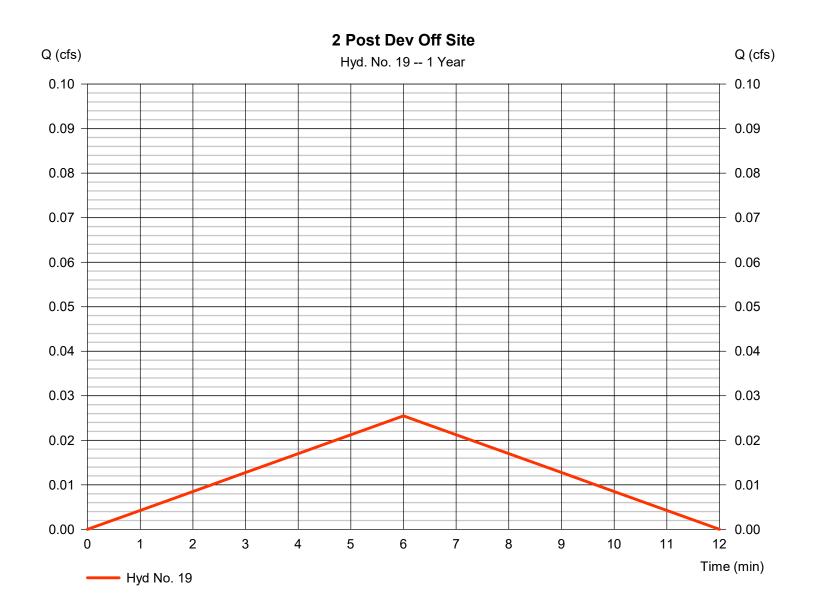
Hydrograph type	= Combine	Peak discharge	= 3.007 cfs
Storm frequency	= 1 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 1,263 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.289 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 104 cuft
Drainage area	= 0.090 ac	Runoff coeff.	= 0.83
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

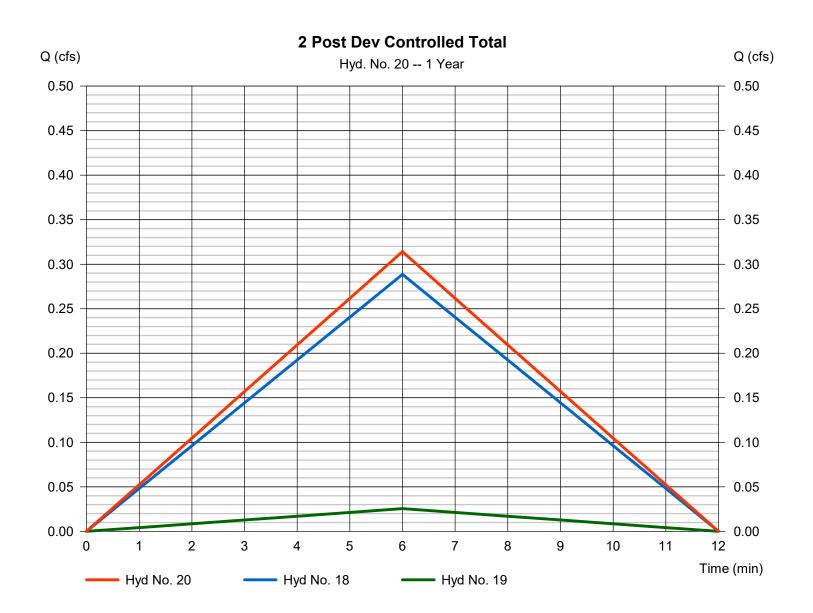


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

2 Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.025 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 9 cuft
Drainage area	= 0.060 ac	Runoff coeff.	= 0.11
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

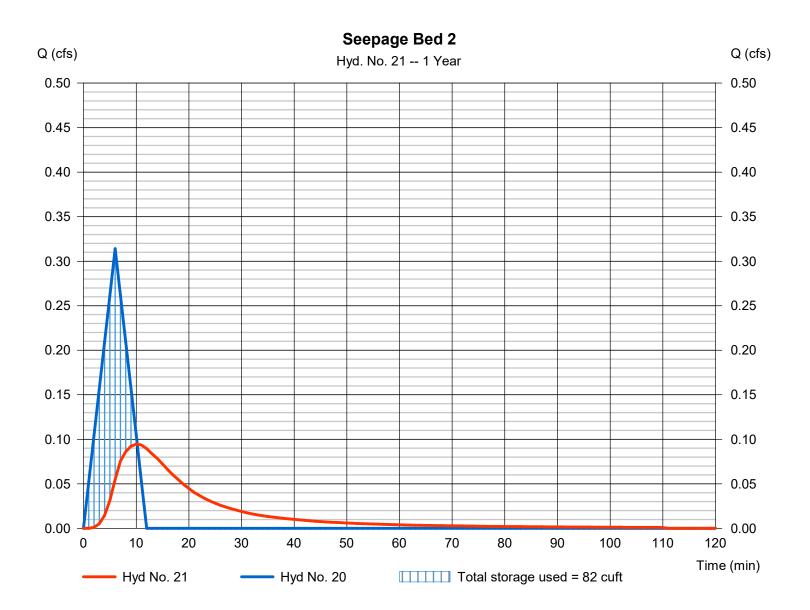


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 0.314 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 113 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 0.150 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type	 Reservoir 1 yrs 1 min 20 - 2 Post Dev Controlled Termin 	Peak discharge	= 0.095 cfs
Storm frequency		Time to peak	= 10 min
Time interval		Hyd. volume	= 107 cuft
Inflow hyd. No.		ot a lax. Elevation	= 108.29 ft
Inflow hyd. No.	 = 20 - 2 Post Dev Controlled T = Seepage Bed 2 	ot a ax. Elevation	= 108.29 ft
Reservoir name		Max. Storage	= 82 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 3 - Seepage Bed 2

Pond Data

UG Chambers -Invert elev. = 108.25 ft, Rise x Span = 0.50×0.50 ft, Barrel Len = 30.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 108.00 ft, Width = 24.00 ft, Height = 1.00 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	108.00	n/a	0	0
0.10	108.10	n/a	29	29
0.20	108.20	n/a	29	58
0.30	108.30	n/a	29	87
0.40	108.40	n/a	30	116
0.50	108.50	n/a	30	146
0.60	108.60	n/a	30	175
0.70	108.70	n/a	30	205
0.80	108.80	n/a	29	234
0.90	108.90	n/a	29	263
1.00	109.00	n/a	29	292

Culvert / Orifice Structures

Weir Structures

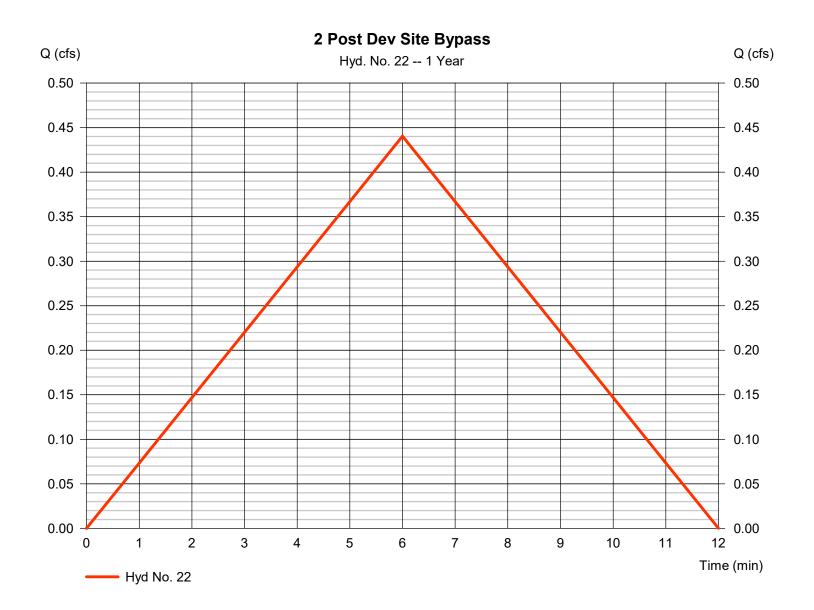
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	3.00	0.00	0.00	Crest Len (ft)	= 3.14	Inactive	Inactive	Inactive
Span (in)	= 18.00	3.00	0.00	0.00	Crest El. (ft)	= 109.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.32	3.32	3.33	3.33
Invert El. (ft)	= 106.50	108.00	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 42.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 22.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	108.00	0.00	0.00			0.00	0.00					0.000
0.01	3	108.01	7.37 ic	0.00 ic			0.00	0.00					0.000
0.02	6	108.02	7.37 ic	0.00 ic			0.00	0.00					0.001
0.03	9	108.03	7.37 ic	0.00 ic			0.00	0.00					0.002
0.04	12	108.04	7.37 ic	0.00 ic			0.00	0.00					0.004
0.05	14	108.05	7.37 ic	0.01 ic			0.00	0.00					0.006
0.06	17	108.06	7.37 ic	0.01 ic			0.00	0.00					0.008
0.07	20	108.07	7.37 ic	0.01 ic			0.00	0.00					0.010
0.08	23	108.08	7.37 ic	0.01 ic			0.00	0.00					0.013
0.09	26	108.09	7.37 ic	0.02 ic			0.00	0.00					0.016
0.10	29	108.10	7.37 ic	0.02 ic			0.00	0.00					0.020
0.11	32	108.11	7.37 ic	0.02 ic			0.00	0.00					0.024
0.12	35	108.12	7.37 ic	0.03 ic			0.00	0.00					0.028
0.13	37	108.13	7.37 ic	0.03 ic			0.00	0.00					0.032
0.14	40	108.14	7.37 ic	0.04 ic			0.00	0.00					0.036
0.15	43	108.15	7.37 ic	0.04 ic			0.00	0.00					0.041
0.16	46	108.16	7.37 ic	0.05 ic			0.00	0.00					0.046
0.17	49	108.17	7.37 ic	0.05 ic			0.00	0.00					0.050
0.18	52	108.18	7.37 ic	0.06 ic			0.00	0.00					0.055
0.19	55	108.19	7.37 ic	0.06 ic			0.00	0.00					0.060
0.20	58	108.20	7.37 ic	0.06 ic			0.00	0.00					0.064
0.21	61	108.21	7.37 ic	0.07 ic			0.00	0.00					0.069
0.22	63	108.22	7.37 ic	0.07 ic			0.00	0.00					0.073
0.23	66	108.23	7.37 ic	0.08 ic			0.00	0.00					0.077
0.24	69	108.24	7.37 ic	0.08 ic			0.00	0.00					0.081
0.25	72	108.25	7.37 ic	0.08 ic			0.00	0.00					0.084
0.26	75	108.26	7.37 ic	0.09 ic			0.00	0.00					0.087
0.27	78	108.27	7.37 ic	0.09 ic			0.00	0.00					0.090
0.28	81	108.28	7.37 ic	0.09 ic			0.00	0.00					0.093
0.29	84	108.29	7.37 ic	0.10 ic			0.00	0.00					0.096
0.30	87	108.30	7.37 ic	0.10 ic			0.00	0.00					0.099
0.31	90	108.31	7.37 ic	0.10 ic			0.00	0.00					0.102
											Continue	as on nev	tnage

123	of	293
-----	----	-----

Seepage Bed 2 Stage / Storage / Discharge Table

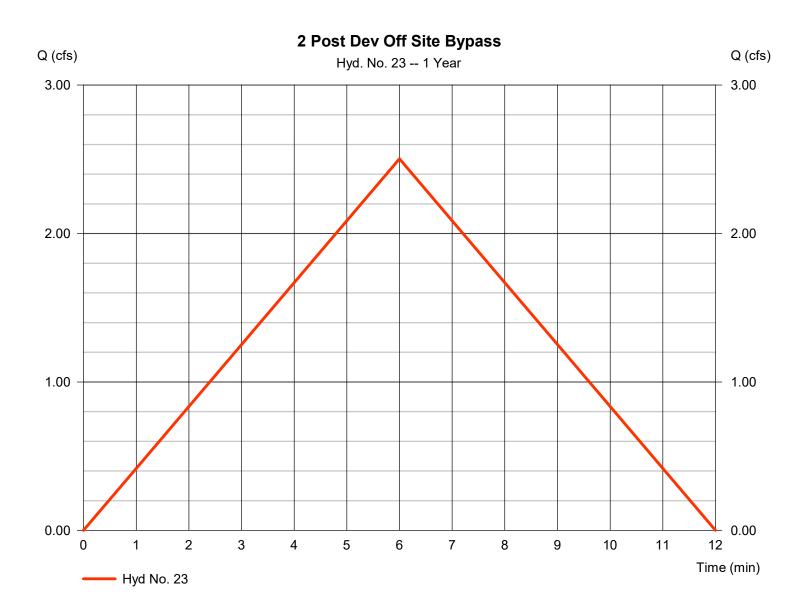

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.32	93	108.32	7.37 ic	0.10 ic			0.00	0.00					0.104
0.33	95	108.33	7.37 ic	0.11 ic			0.00	0.00					0.107
0.34	98	108.34	7.37 ic	0.11 ic			0.00	0.00					0.110
0.35	101	108.35	7.37 ic	0.11 ic			0.00	0.00					0.112
0.36 0.37	104 107	108.36	7.37 ic 7.37 ic	0.11 ic 0.12 ic			0.00	0.00 0.00					0.115 0.117
0.37	107	108.37 108.38	7.37 ic 7.37 ic	0.12 ic 0.12 ic			0.00 0.00	0.00					0.117
0.39	113	108.39	7.37 ic	0.12 ic 0.12 ic			0.00	0.00					0.122
0.40	116	108.40	7.37 ic	0.12 ic			0.00	0.00					0.124
0.41	119	108.41	7.37 ic	0.13 ic			0.00	0.00					0.126
0.42	122	108.42	7.37 ic	0.13 ic			0.00	0.00					0.128
0.43	125	108.43	7.37 ic	0.13 ic			0.00	0.00					0.131
0.44	128	108.44	7.37 ic	0.13 ic			0.00	0.00					0.133
0.45	131	108.45	7.37 ic	0.13 ic			0.00	0.00					0.135
0.46	134	108.46	7.37 ic	0.14 ic			0.00	0.00					0.137
0.47 0.48	137 140	108.47 108.48	7.37 ic 7.37 ic	0.14 ic 0.14 ic			0.00 0.00	0.00 0.00					0.139 0.141
0.48	140	108.49	7.37 ic	0.14 ic 0.14 ic			0.00	0.00					0.141
0.50	146	108.50	7.37 ic	0.14 ic			0.00	0.00					0.145
0.51	149	108.51	7.37 ic	0.15 ic			0.00	0.00					0.147
0.52	152	108.52	7.37 ic	0.15 ic			0.00	0.00					0.149
0.53	155	108.53	7.37 ic	0.15 ic			0.00	0.00					0.150
0.54	158	108.54	7.37 ic	0.15 ic			0.00	0.00					0.152
0.55	161	108.55	7.37 ic	0.15 ic			0.00	0.00					0.154
0.56	164	108.56	7.37 ic	0.16 ic			0.00	0.00					0.156
0.57	167 170	108.57	7.37 ic	0.16 ic 0.16 ic			0.00	0.00 0.00					0.158
0.58 0.59	170	108.58 108.59	7.37 ic 7.37 ic	0.16 ic 0.16 ic			0.00 0.00	0.00					0.159 0.161
0.59	175	108.60	7.37 ic	0.16 ic			0.00	0.00					0.163
0.61	178	108.61	7.37 ic	0.16 ic			0.00	0.00					0.165
0.62	181	108.62	7.37 ic	0.17 ic			0.00	0.00					0.166
0.63	184	108.63	7.37 ic	0.17 ic			0.00	0.00					0.168
0.64	187	108.64	7.37 ic	0.17 ic			0.00	0.00					0.170
0.65	190	108.65	7.37 ic	0.17 ic			0.00	0.00					0.171
0.66	193	108.66	7.37 ic	0.17 ic			0.00	0.00					0.173
0.67	196	108.67	7.37 ic	0.17 ic			0.00	0.00					0.174
0.68 0.69	199 202	108.68 108.69	7.37 ic 7.37 ic	0.18 ic 0.18 ic			0.00 0.00	0.00 0.00					0.176 0.178
0.09	202	108.70	7.37 ic	0.18 ic			0.00	0.00					0.178
0.70	203	108.71	7.37 ic	0.18 ic			0.00	0.00					0.181
0.72	211	108.72	7.37 ic	0.18 ic			0.00	0.00					0.182
0.73	214	108.73	7.37 ic	0.18 ic			0.00	0.00					0.184
0.74	217	108.74	7.37 ic	0.19 ic			0.00	0.00					0.185
0.75	219	108.75	7.37 ic	0.19 ic			0.00	0.00					0.187
0.76	222	108.76	7.37 ic	0.19 ic			0.00	0.00					0.188
0.77	225	108.77	7.37 ic	0.19 ic			0.00	0.00					0.190
0.78 0.79	228 231	108.78 108.79	7.37 ic 7.37 ic	0.19 ic 0.19 ic			0.00 0.00	0.00 0.00					0.191 0.193
0.79	231	108.80	7.37 ic	0.19 ic 0.19 ic			0.00	0.00					0.193
0.81	237	108.81	7.37 ic	0.20 ic			0.00	0.00					0.194
0.82	240	108.82	7.37 ic	0.20 ic			0.00	0.00					0.197
0.83	243	108.83	7.37 ic	0.20 ic			0.00	0.00					0.198
0.84	246	108.84	7.37 ic	0.20 ic			0.00	0.00					0.200
0.85	248	108.85	7.37 ic	0.20 ic			0.00	0.00					0.201
0.86	251	108.86	7.37 ic	0.20 ic			0.00	0.00					0.203
0.87	254	108.87	7.37 ic	0.20 ic			0.00	0.00					0.204
0.88	257	108.88	7.37 ic 7.37 ic	0.21 ic			0.00	0.00					0.205
0.89 0.90	260 263	108.89 108.90	7.37 ic 7.37 ic	0.21 ic 0.21 ic			0.00 0.00	0.00 0.00					0.207 0.208
0.90	265	108.90	7.37 ic	0.21 ic 0.21 ic			0.00	0.00					0.208
0.91	269	108.92	7.37 ic	0.21 ic			0.00	0.00					0.203
0.93	271	108.93	7.37 ic	0.21 ic			0.00	0.00					0.212
0.94	274	108.94	7.37 ic	0.21 ic			0.00	0.00					0.213
0.95	277	108.95	7.37 ic	0.21 ic			0.00	0.00					0.215
0.96	280	108.96	7.37 ic	0.22 ic			0.00	0.00					0.216
0.97	283	108.97	7.37 ic	0.22 ic			0.00	0.00					0.217
0.98	286	108.98	7.37 ic	0.22 ic			0.00	0.00					0.219
0.99 1.00	289 292	108.99 109.00	7.37 ic 7.37 ic	0.22 ic 0.22 ic			0.00 0.00	0.00 0.00					0.220 0.221
1.00	292	109.00	1.57 10	0.22 16			0.00	0.00					0.221

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.440 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 159 cuft
Drainage area	= 0.200 ac	Runoff coeff.	= 0.57
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

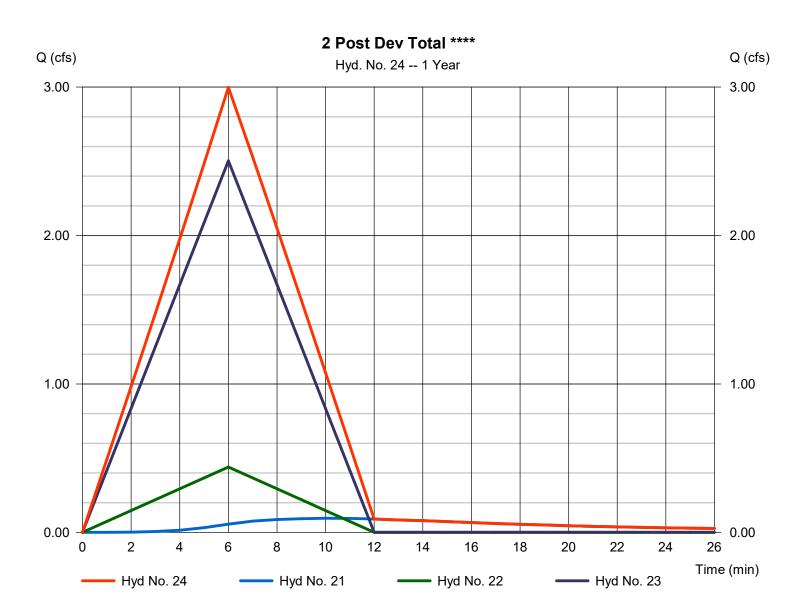


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 2.503 cfs
Storm frequency	= 1 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 901 cuft
Drainage area	= 1.350 ac	Runoff coeff.	= 0.48
Intensity	= 3.863 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



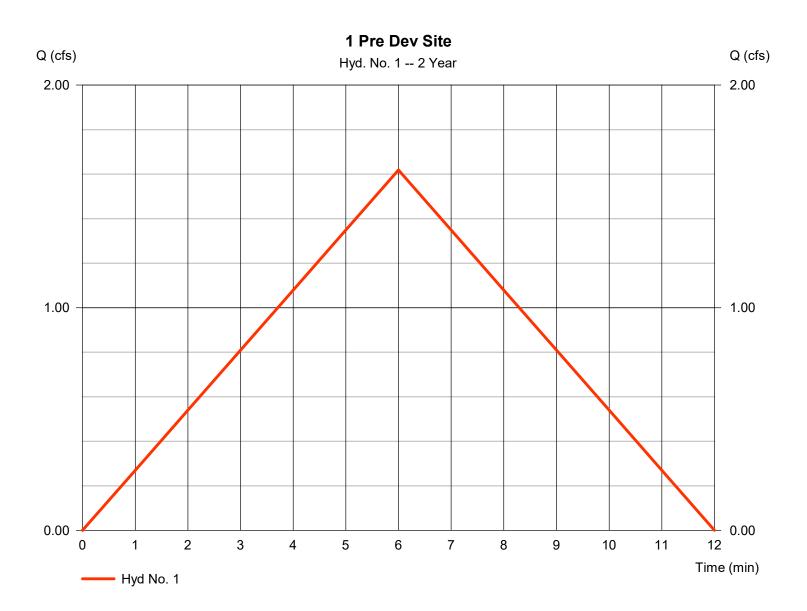
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 24

2 Post Dev Total ****

Hydrograph type = Cor	mbine Peak discharge	= 2.999 cfs
Storm frequency = 1 yr	rs Time to peak	= 6 min
Time interval = 1 m	•	= 1,167 cuft a = 1.550 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

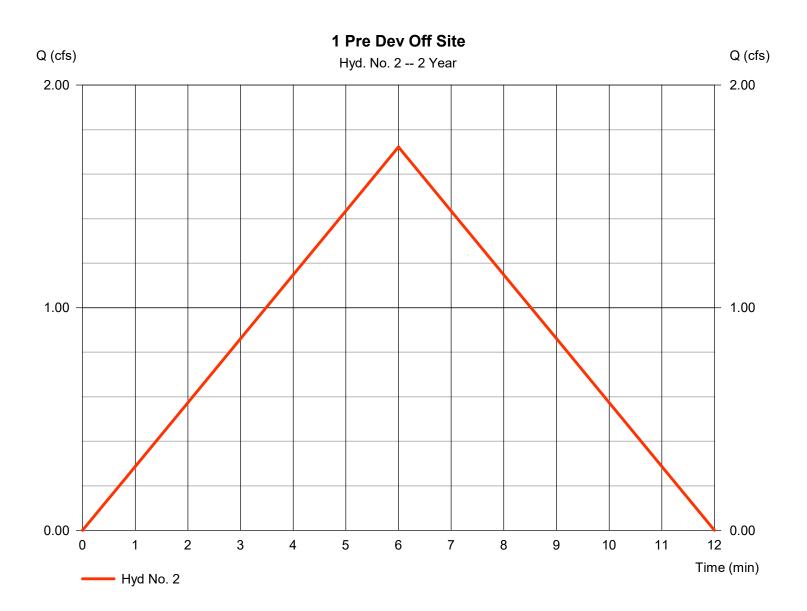

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Mod. Rational	1.619	1	6	583				1 Pre Dev Site
2	Mod. Rational	1.722	1	6	620				1 Pre Dev Off Site
3	Combine	3.341	1	6	1,203	1, 2			1 Pre Dev Total ****
4	Mod. Rational	1.475	1	6	531				1A Post Dev Site
5	Mod. Rational	1.584	1	6	570				1A Post Dev Off Site
6	Combine	3.059	1	6	1,101	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.000	1	86	0	6	126.92	1,090	Seepage Bed 1A
8	Mod. Rational	1.165	1	6	420				1B Post Dev Site
9	Combine	1.165	1	6	420	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.307	1	10	242	9	127.31	299	Seepage Bed 1B
11	Mod. Rational	0.456	1	6	164				1 Post Dev Site Bypass
12	Mod. Rational	0.288	1	6	104				1 Post Dev Off Site Bypass
13	Combine	0.868	1	6	510	10, 11, 12			1 Post Dev Total ****
15	Mod. Rational	0.576	1	7	242				2 Pre Dev Site
16	Mod. Rational	3.001	1	7	1,260				2 Pre Dev Off Site
17	Combine	3.577	1	7	1,502	15, 16			2 Pre Dev Total ****
18	Mod. Rational	0.343	1	6	123				2 Post Dev Site
19	Mod. Rational	0.030	1	6	11				2 Post Dev Off Site
20	Combine	0.373	1	6	134	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.109	1	10	128	20	108.34	97.6	Seepage Bed 2
22	Mod. Rational	0.523	1	6	188				2 Post Dev Site Bypass
23	Mod. Rational	2.976	1	6	1,071				2 Post Dev Off Site Bypass
24	Combine	3.569	1	6	1,388	21, 22, 23			2 Post Dev Total ****
301	Watersheds	2084 RM	l.gpw		Return I	Period: 2 Ye	ear	Friday, 09	/ 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.619 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 583 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.47
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

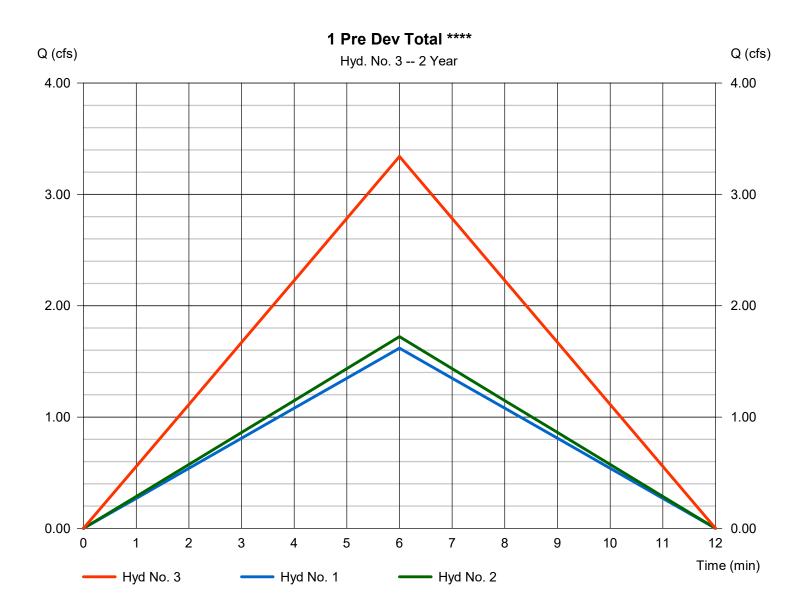


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

1 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.722 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 620 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.5
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

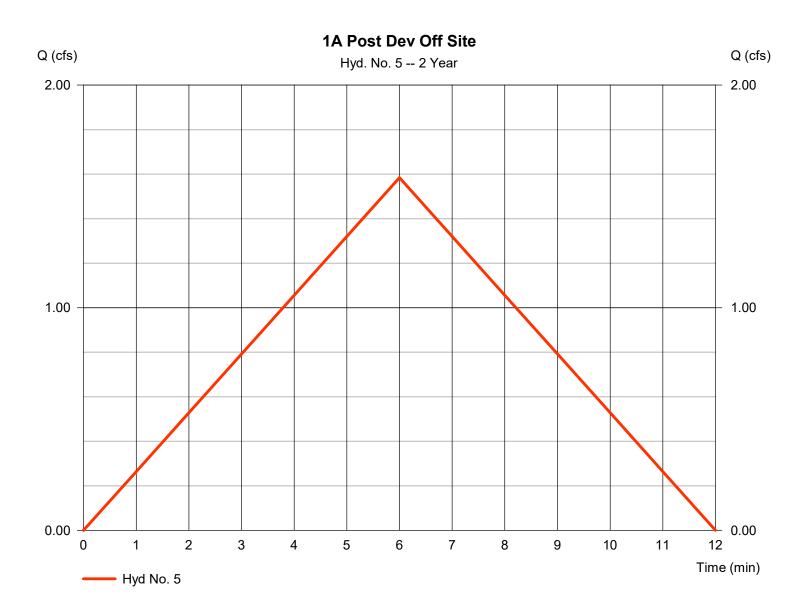
Hydrograph type	= Combine	Peak discharge	= 3.341 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,203 cuft
Inflow hyds.	= 1.2	Contrib. drain. area	= 1,500 ac
innow nyus.	- 1, 2	Contrib. drain. area	- 1.500 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.475 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 531 cuft
Drainage area	= 0.440 ac	Runoff coeff.	= 0.73
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

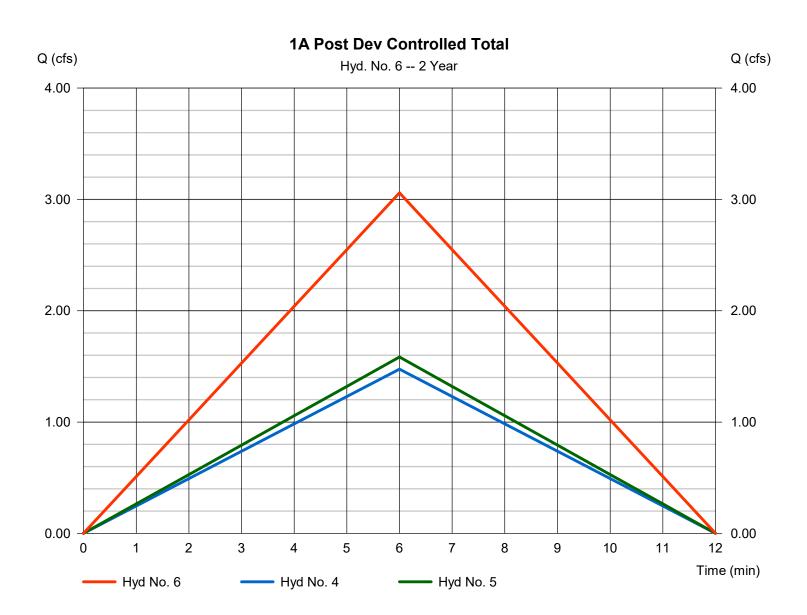


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.584 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 570 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.46
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



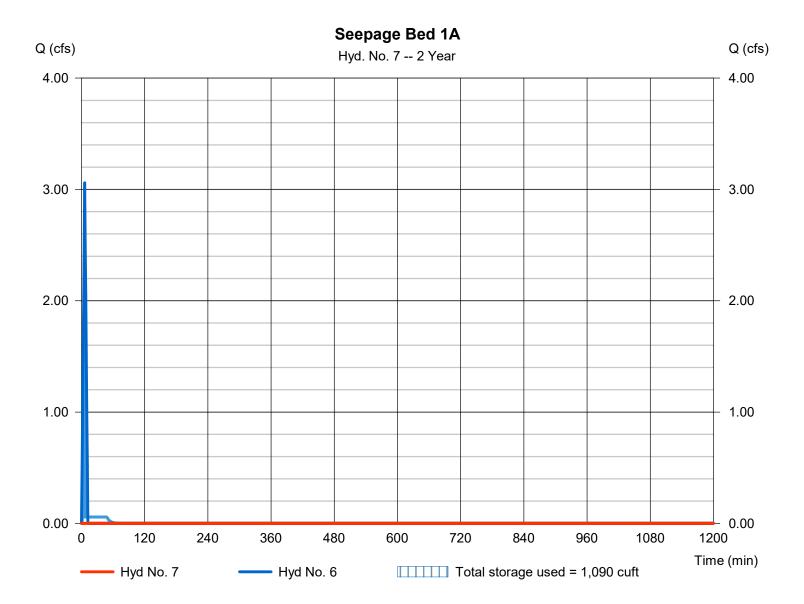
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 3.059 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,101 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 1.190 ac

Friday, 09 / 22 / 2023

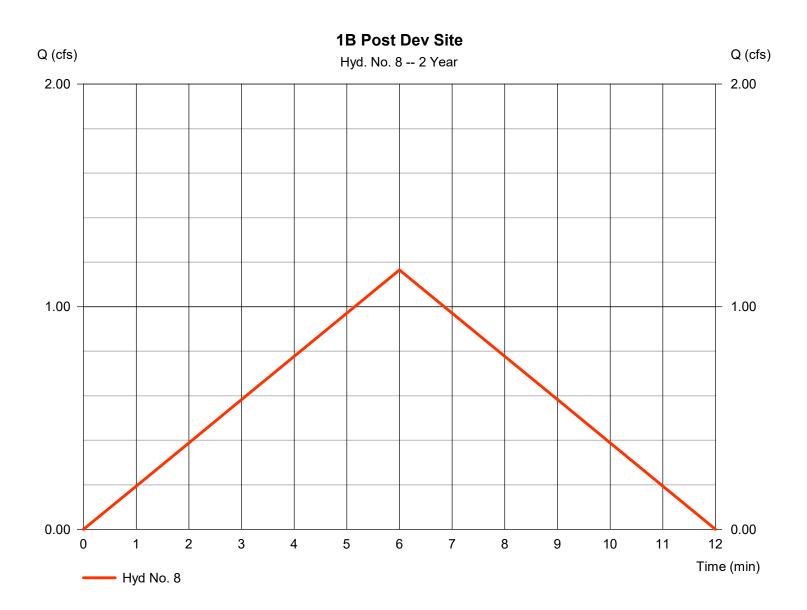

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 86 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - 1A Post Dev Contr	olled TotMax. Elevation	= 126.92 ft
Reservoir name	= Seepage Bed 1A	Max. Storage	= 1,090 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

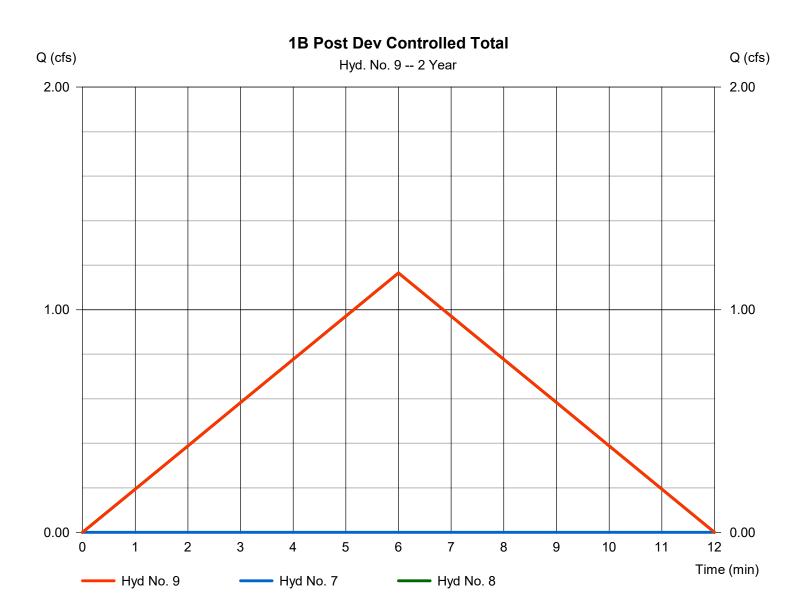


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.165 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 420 cuft
Drainage area	= 0.270 ac	Runoff coeff.	= 0.94
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

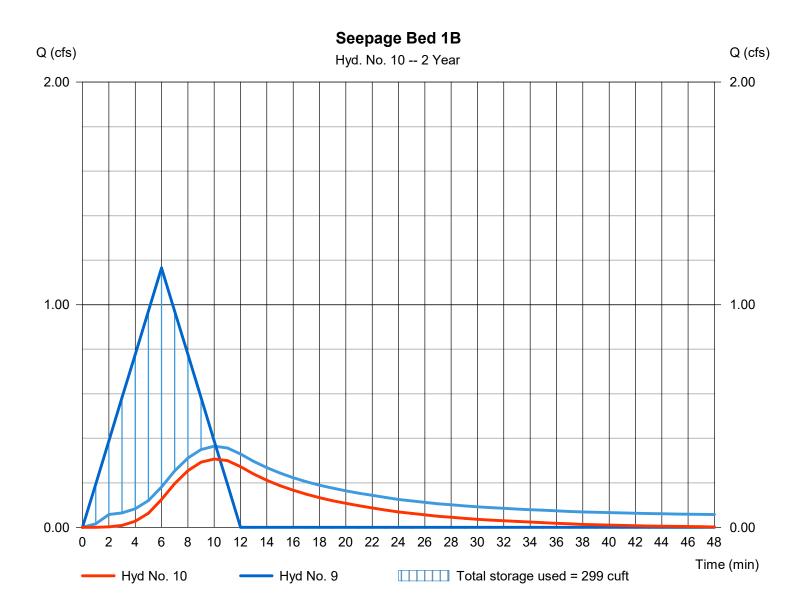


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 1.165 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 420 cuft
Inflow hyds.	= 7, 8	Contrib. drain. area	= 0.270 ac

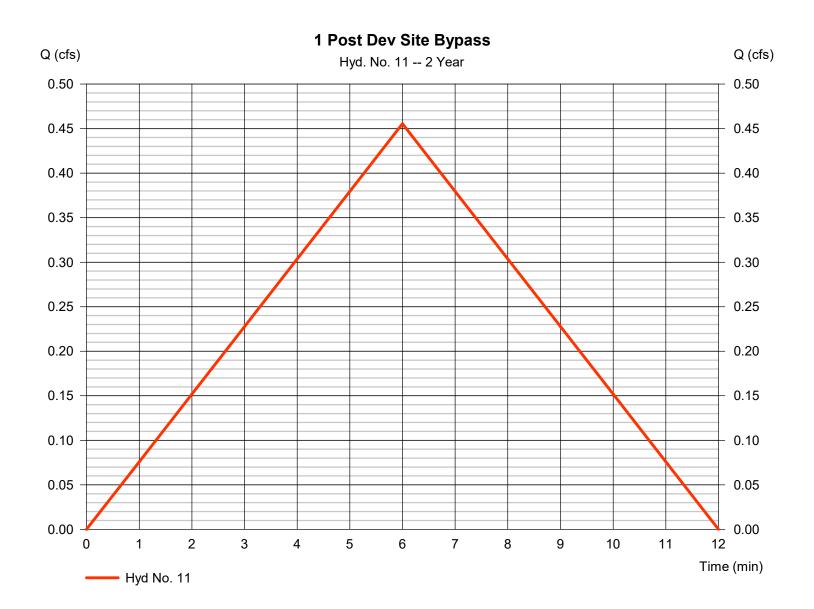

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 2 yrs 1 min 9 - 1B Post Dev Controlled To Scopage Red 1B 		= 0.307 cfs = 10 min = 242 cuft = 127.31 ft = 290 cuft
Reservoir name	= Seepage Bed 1B	Max. Storage	= 299 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

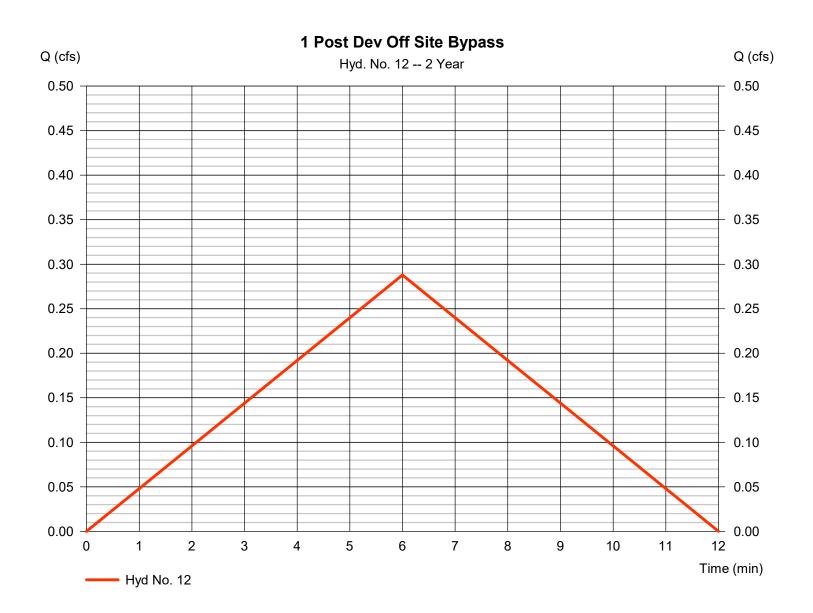


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.456 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 164 cuft
Drainage area	= 0.160 ac	Runoff coeff.	= 0.62
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

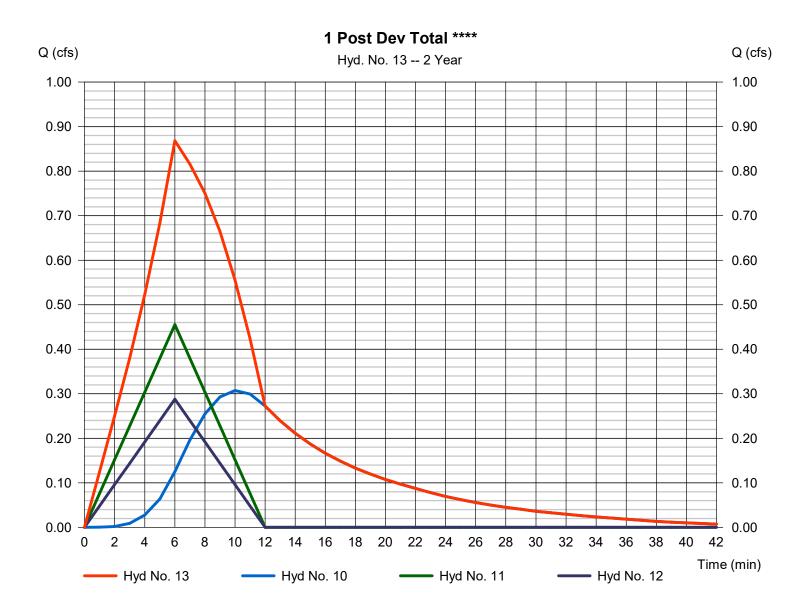


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.288 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 104 cuft
Drainage area	= 0.110 ac	Runoff coeff.	= 0.57
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

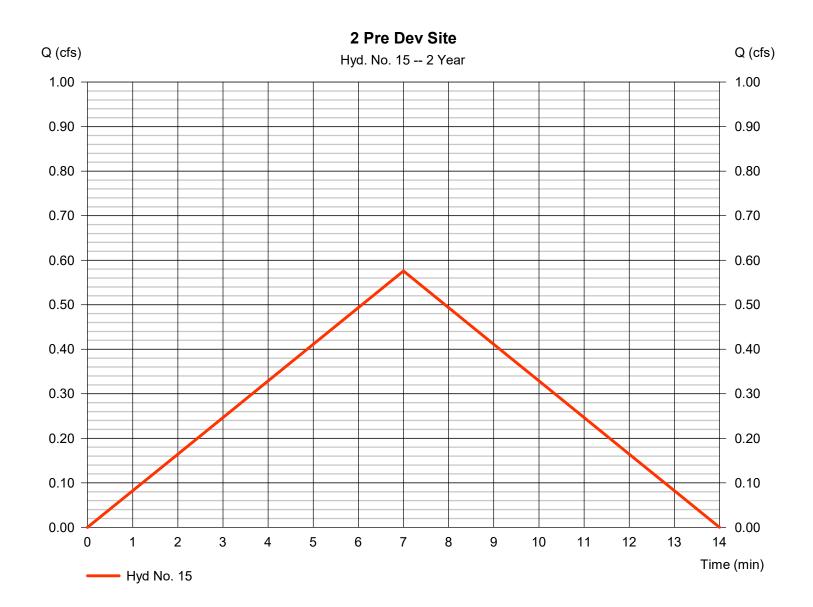


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 0.868 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 510 cuft
Inflow hyds.	= 10, 11, 12	Contrib. drain. area	= 0.270 ac

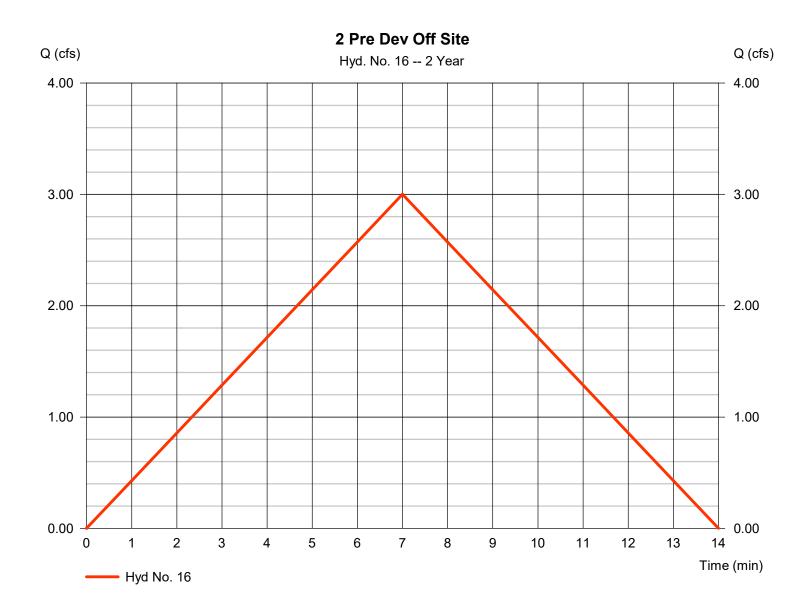


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.576 cfs
Storm frequency	= 2 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 242 cuft
Drainage area	= 0.410 ac	Runoff coeff.	= 0.32
Intensity	= 4.387 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

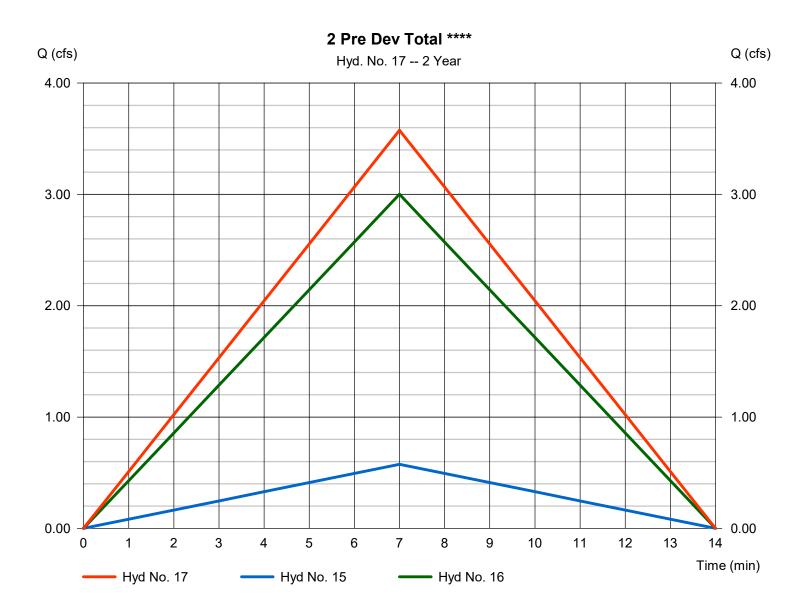


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 3.001 cfs
Storm frequency	= 2 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 1,260 cuft
Drainage area	= 1.520 ac	Runoff coeff.	= 0.45
Intensity	= 4.387 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

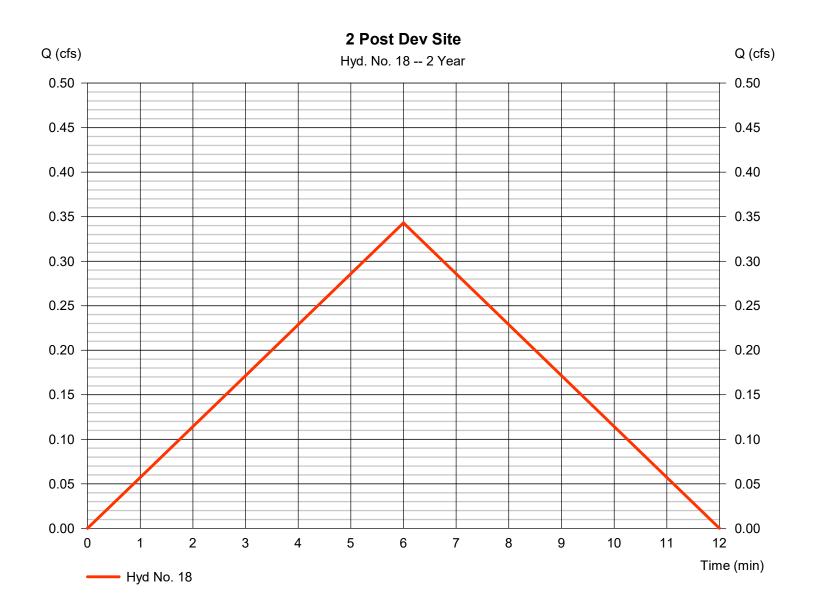


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

Hydrograph type Storm frequency	= Combine = 2 yrs	Peak discharge Time to peak	= 3.577 cfs = 7 min
Time interval	= 1 min	Hyd. volume	= 1,502 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac

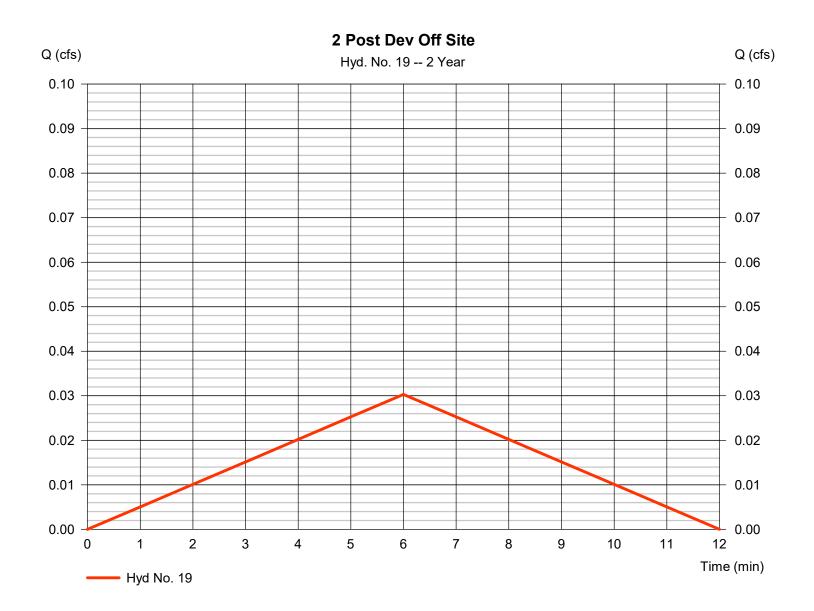


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.343 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 123 cuft
Drainage area	= 0.090 ac	Runoff coeff.	= 0.83
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

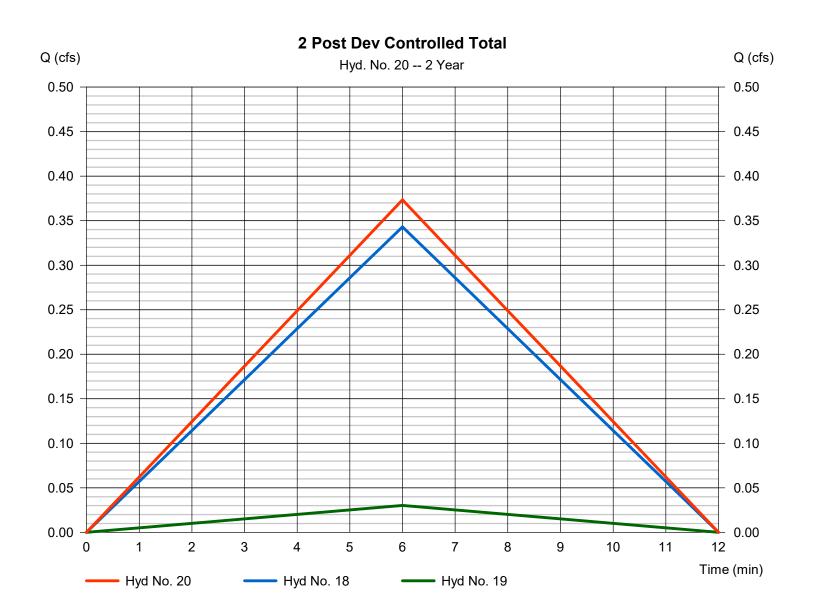


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

2 Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.030 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 11 cuft
Drainage area	= 0.060 ac	Runoff coeff.	= 0.11
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

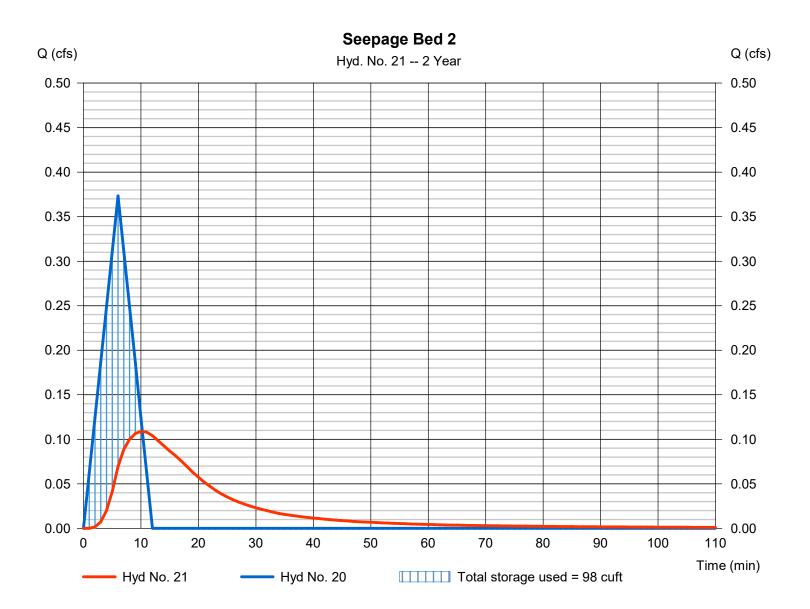


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total

	5 1 7 5	= 0.373 cfs = 6 min
5	5	= 134 cuft = 0.150 ac

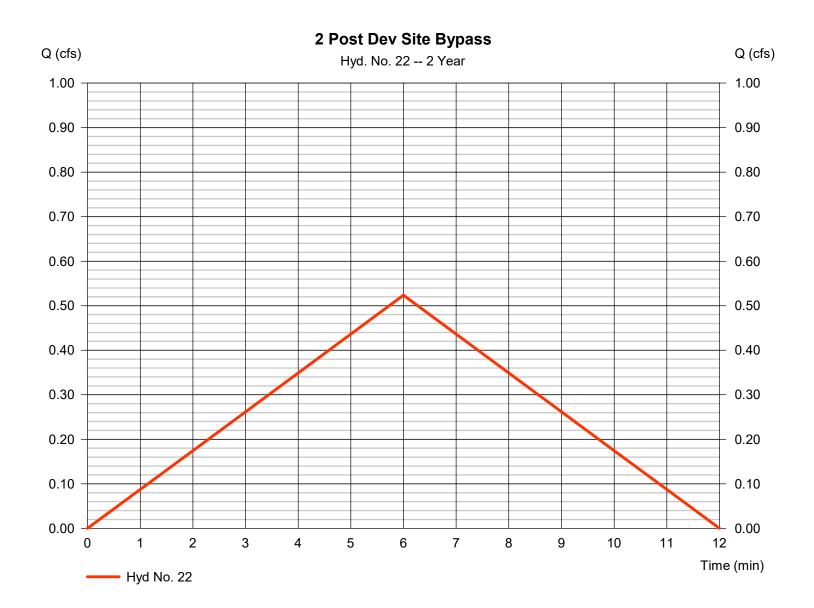

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type Storm frequency	= Reservoir = 2 yrs	Peak discharge Time to peak	= 0.109 cfs = 10 min
Time interval	= 1 min	Hyd. volume	= 128 cuft
Inflow hyd. No. Reservoir name	= 20 - 2 Post Dev Contro= Seepage Bed 2	Max. Storage	= 108.34 ft = 98 cuft

Storage Indication method used.

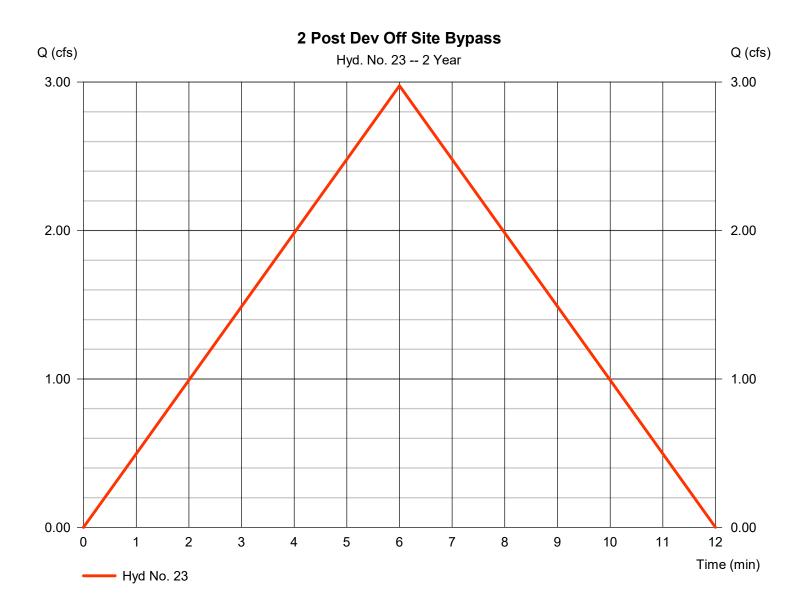


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.523 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 188 cuft
Drainage area	= 0.200 ac	Runoff coeff.	= 0.57
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

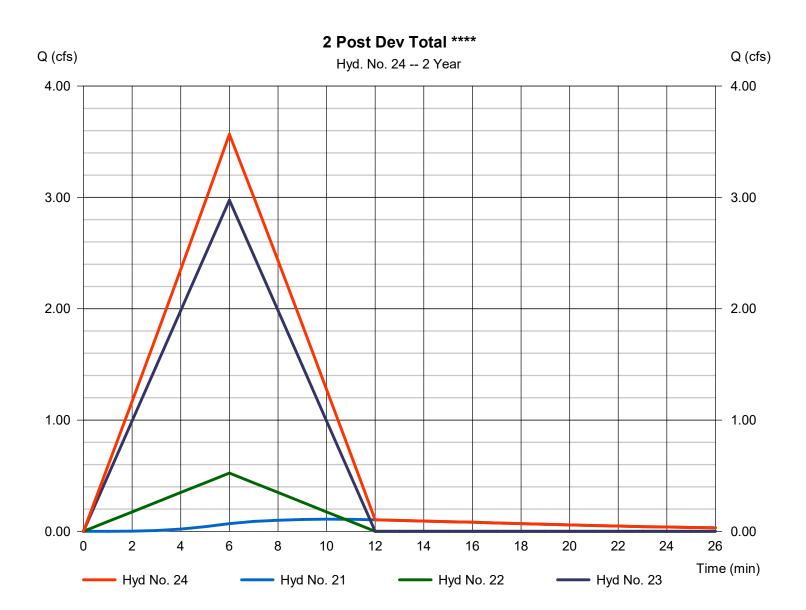


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 2.976 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,071 cuft
Drainage area	= 1.350 ac	Runoff coeff.	= 0.48
Intensity	= 4.592 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

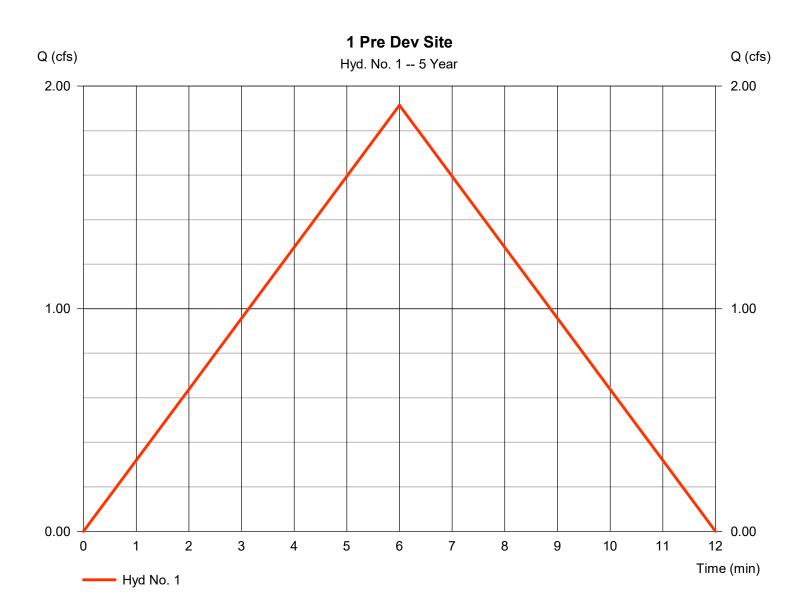
Hyd. No. 24

2 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 3.569 cfs
Storm frequency	= 2 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,388 cuft
Inflow hyds.	= 21, 22, 23	Contrib. drain. area	= 1.550 ac
innen nyaéi	_ ,,		11000 40

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

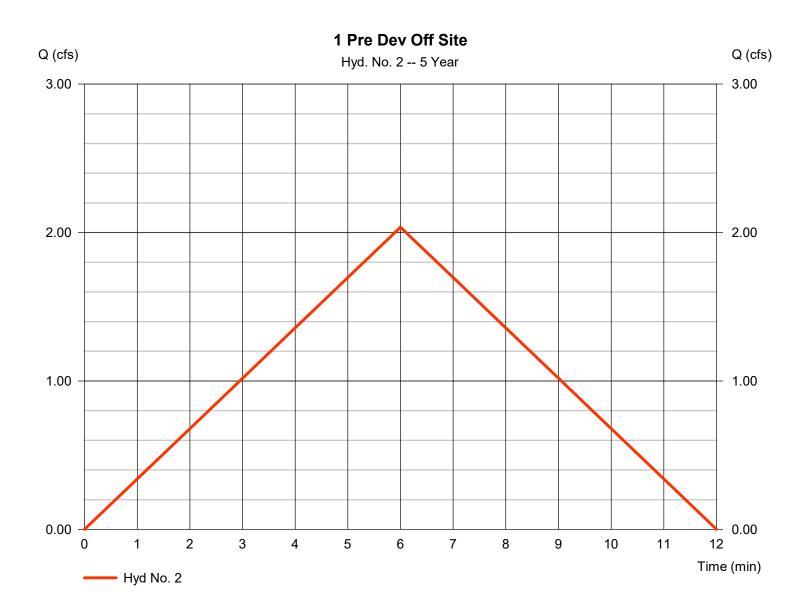

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Mod. Rational	1.914	1	6	689				1 Pre Dev Site
2	Mod. Rational	2.036	1	6	733				1 Pre Dev Off Site
3	Combine	3.950	1	6	1,422	1, 2			1 Pre Dev Total ****
4	Mod. Rational	1.744	1	6	628				1A Post Dev Site
5	Mod. Rational	1.873	1	6	674				1A Post Dev Off Site
6	Combine	3.617	1	6	1,302	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.000	1	277	0	6	127.09	1,290	Seepage Bed 1A
8	Mod. Rational	1.378	1	6	496				1B Post Dev Site
9	Combine	1.378	1	6	496	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.403	1	10	312	9	127.36	348	Seepage Bed 1B
11	Mod. Rational	0.539	1	6	194				1 Post Dev Site Bypass
12	Mod. Rational	0.340	1	6	123				1 Post Dev Off Site Bypass
13	Combine	1.050	1	6	628	10, 11, 12			1 Post Dev Total ****
15	Mod. Rational	0.682	1	7	287				2 Pre Dev Site
16	Mod. Rational	3.556	1	7	1,494				2 Pre Dev Off Site
17	Combine	4.239	1	7	1,780	15, 16			2 Pre Dev Total ****
18	Mod. Rational	0.406	1	6	146				2 Post Dev Site
19	Mod. Rational	0.036	1	6	13				2 Post Dev Off Site
20	Combine	0.441	1	6	159	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.124	1	10	153	20	108.40	116	Seepage Bed 2
22	Mod. Rational	0.619	1	6	223				2 Post Dev Site Bypass
23	Mod. Rational	3.518	1	6	1,267				2 Post Dev Off Site Bypass
24	Combine	4.220	1	6	1,642	21, 22, 23			2 Post Dev Total ****
301 Watersheds 2084 RM.gpw			Return	Period: 5 Ye	ar	Friday, 09	/ 22 / 2023		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.914 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 689 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.47
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

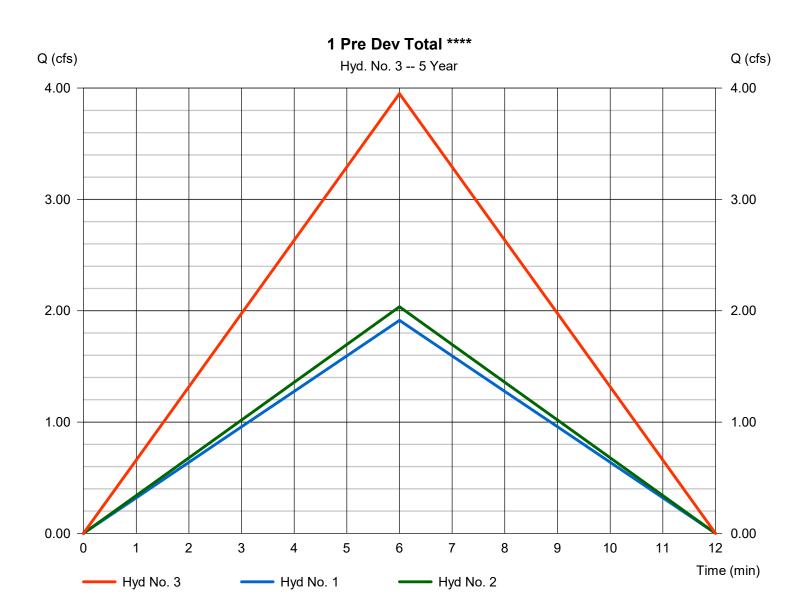


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

1 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.036 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 733 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.5
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a


Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

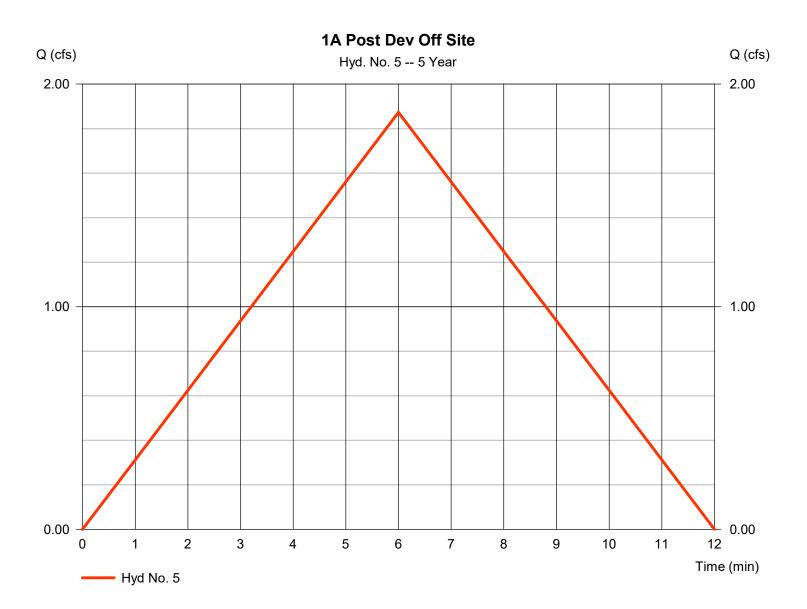
Hydrograph type	= Combine	Peak discharge	= 3.950 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,422 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	= 1.500 ac
-			

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.744 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 628 cuft
Drainage area	= 0.440 ac	Runoff coeff.	= 0.73
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

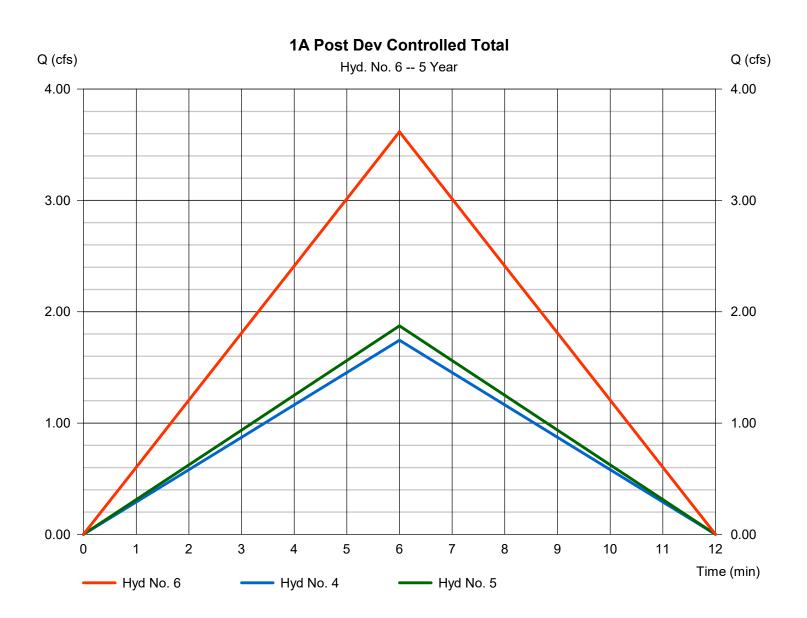


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.873 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 674 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.46
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

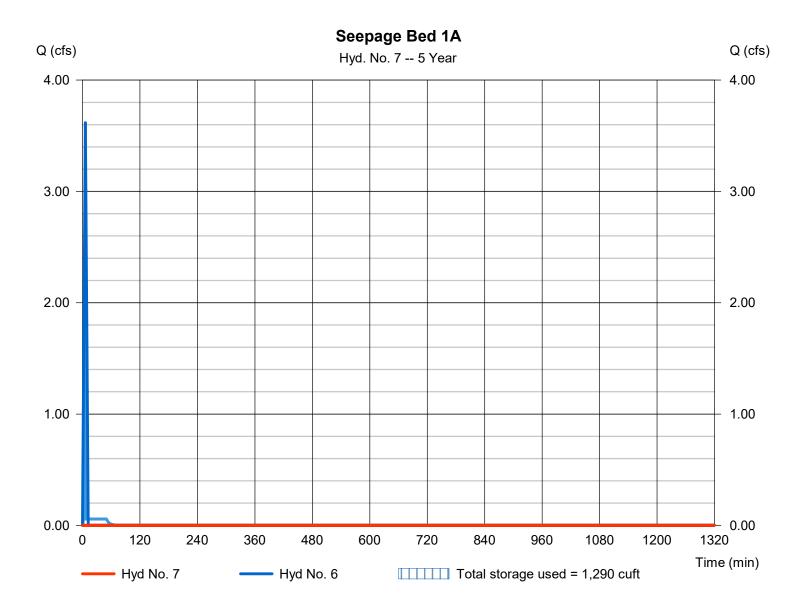


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 3.617 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,302 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 1.190 ac

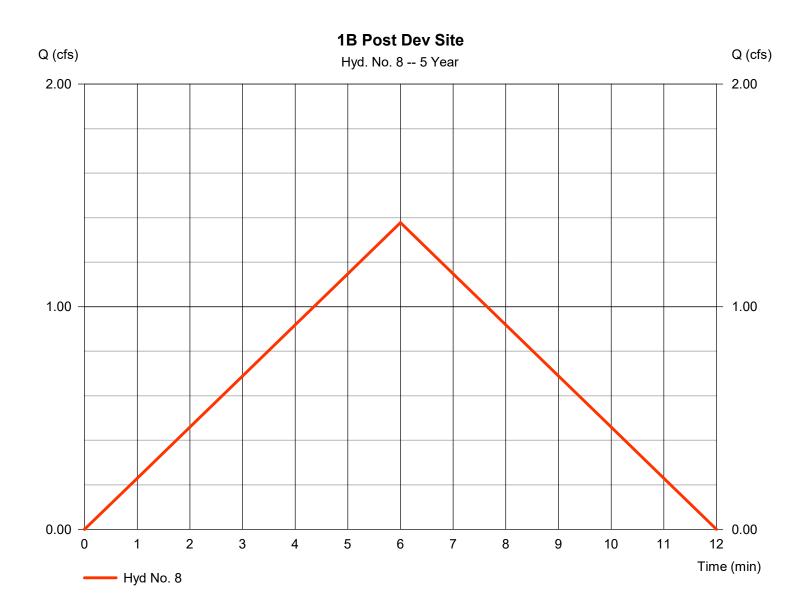

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 5 yrs	Time to peak	= 277 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - 1A Post Dev Cont	rolled Totalax. Elevation	= 127.09 ft
Reservoir name	= Seepage Bed 1A	Max. Storage	= 1,290 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

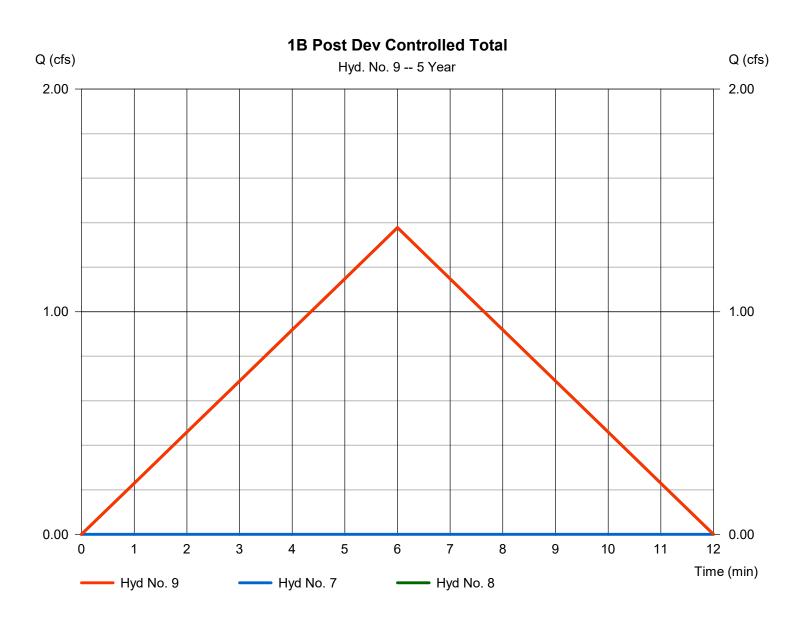


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.378 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 496 cuft
Drainage area	= 0.270 ac	Runoff coeff.	= 0.94
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

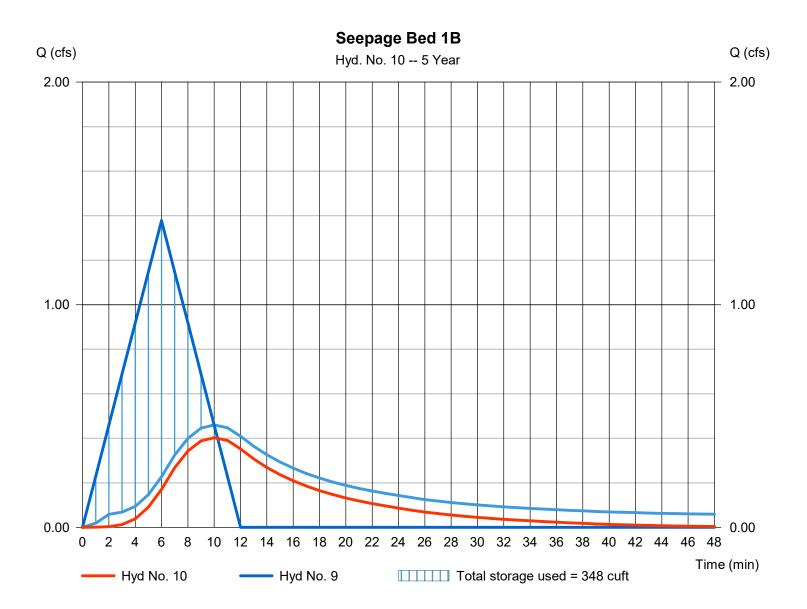


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 1.378 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 496 cuft
Inflow hyds.	= 7,8	Contrib. drain. area	= 0.270 ac

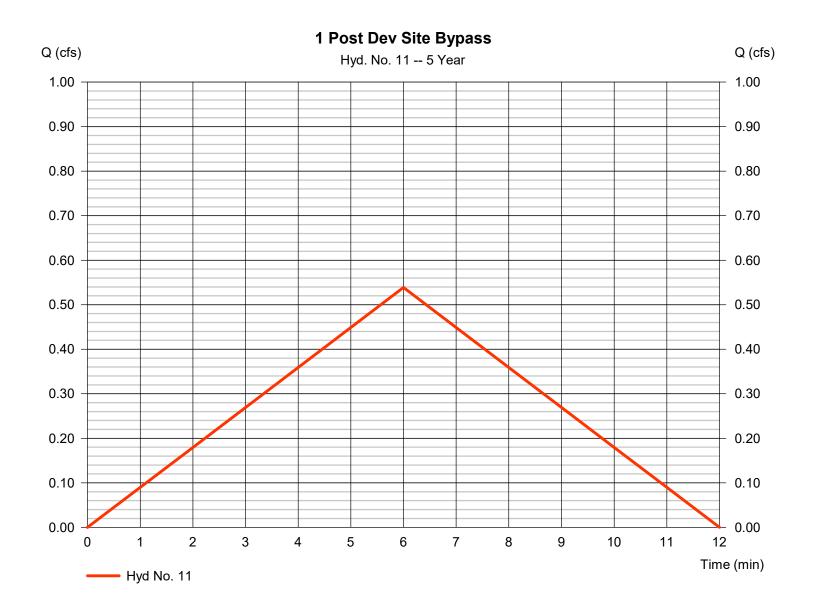

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 5 yrs 1 min 9 - 1B Post Dev Controlled To Scopage Red 1B 		= 0.403 cfs = 10 min = 312 cuft = 127.36 ft = 348 cuft
Reservoir name	= Seepage Bed 1B	Max. Storage	= 348 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

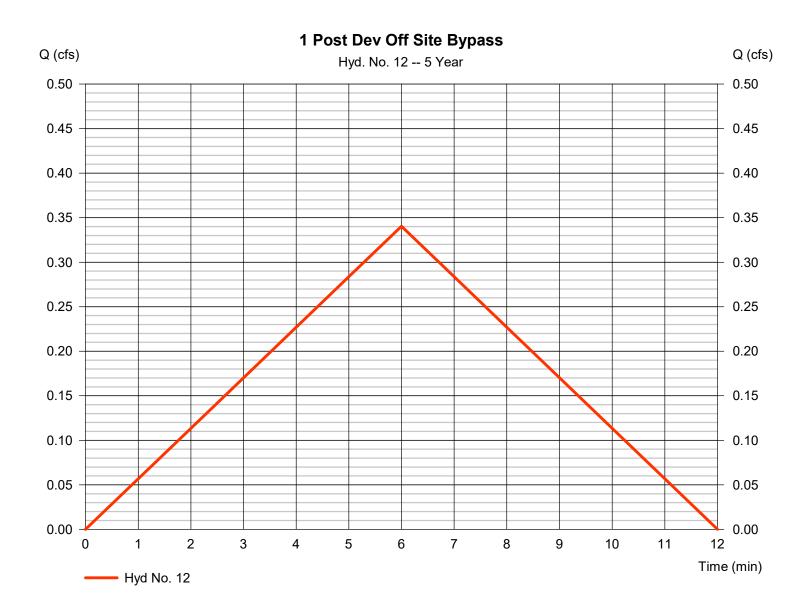

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.539 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 194 cuft
Drainage area	= 0.160 ac	Runoff coeff.	= 0.62
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

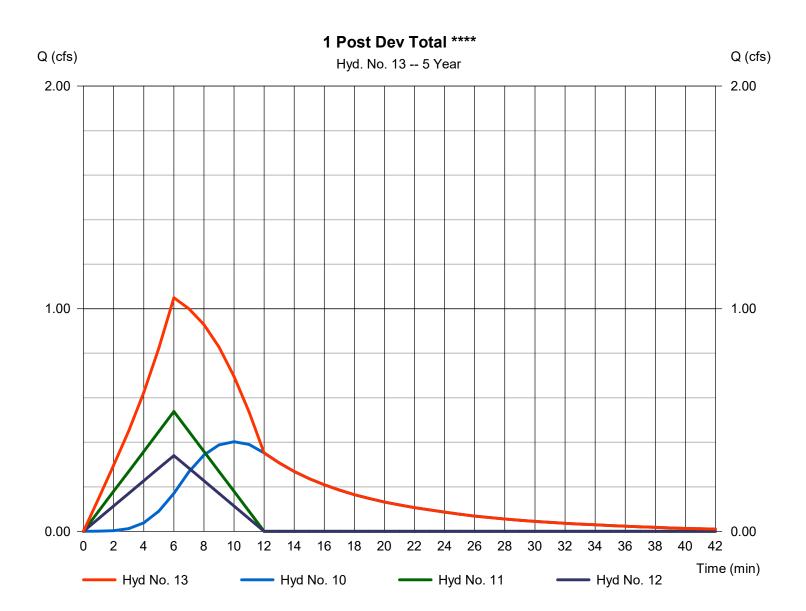


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.340 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 123 cuft
Drainage area	= 0.110 ac	Runoff coeff.	= 0.57
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

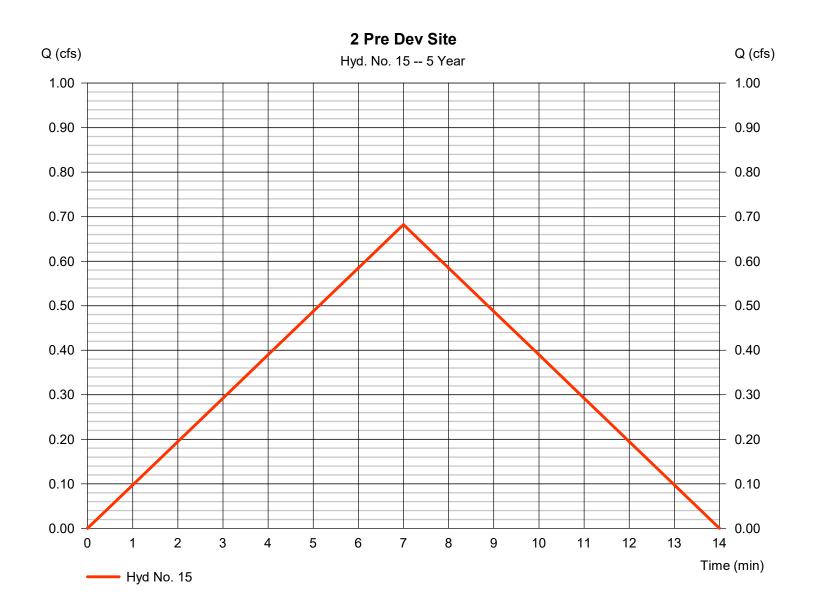


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

Hydrograph type = Co Storm frequency = 5 y		scharge = 1.050 cfs peak = 6 min
Time interval = 1 n	nin Hyd. vo	•

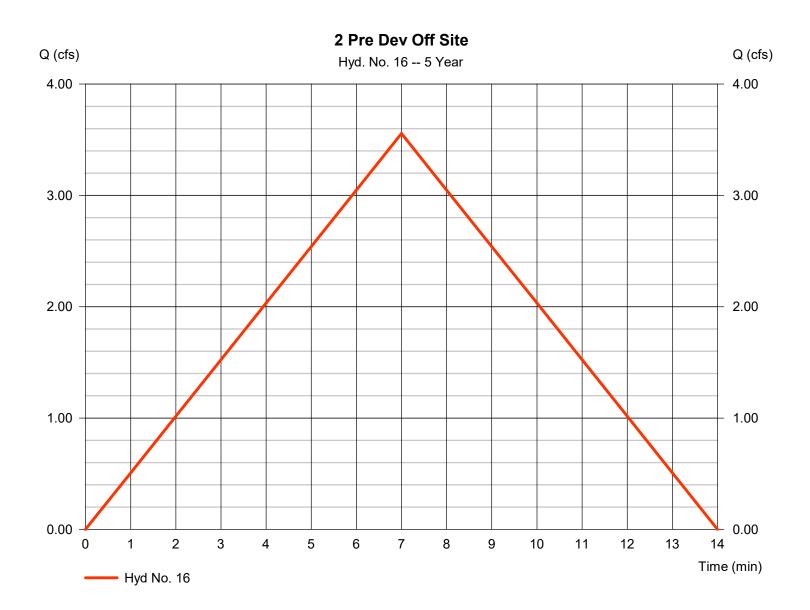


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.682 cfs
Storm frequency	= 5 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 287 cuft
Drainage area	= 0.410 ac	Runoff coeff.	= 0.32
Intensity	= 5.199 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

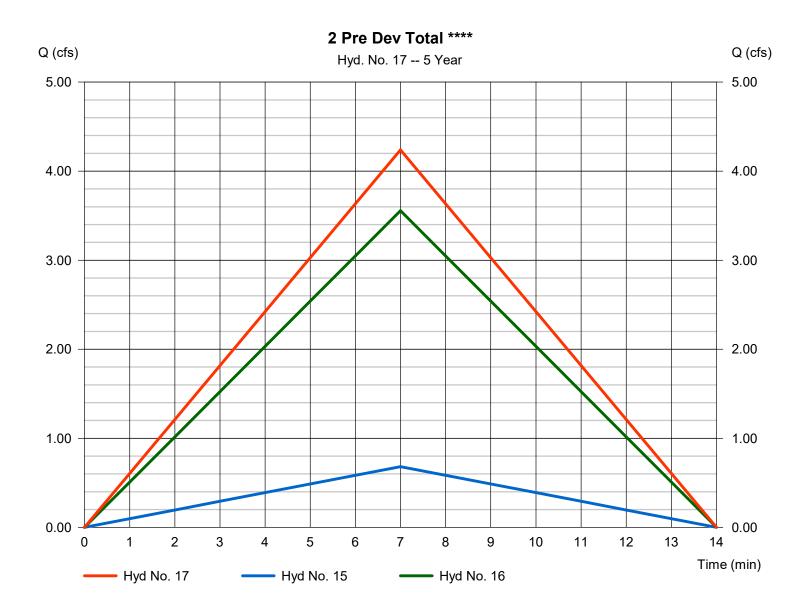


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 3.556 cfs
Storm frequency	= 5 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 1,494 cuft
Drainage area	= 1.520 ac	Runoff coeff.	= 0.45
Intensity	= 5.199 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

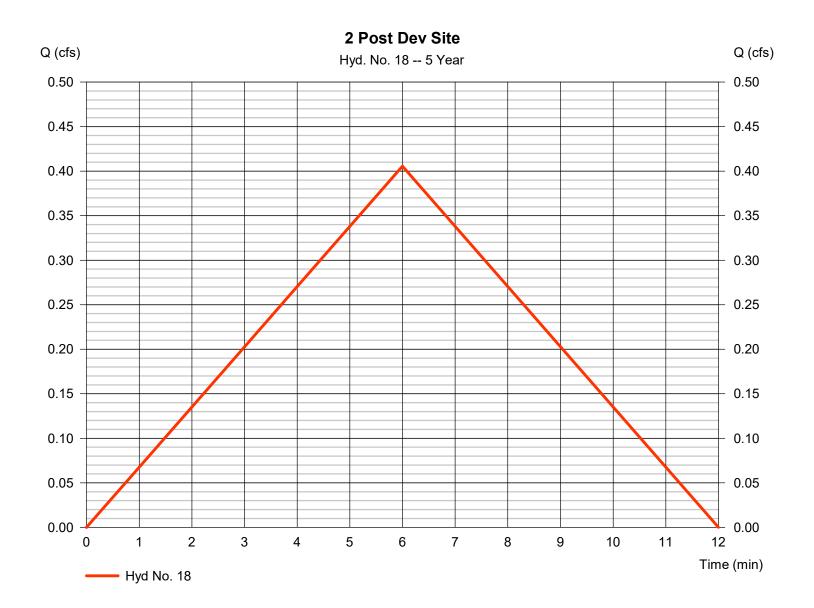


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 4.239 cfs
Storm frequency	= 5 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 1,780 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac


Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

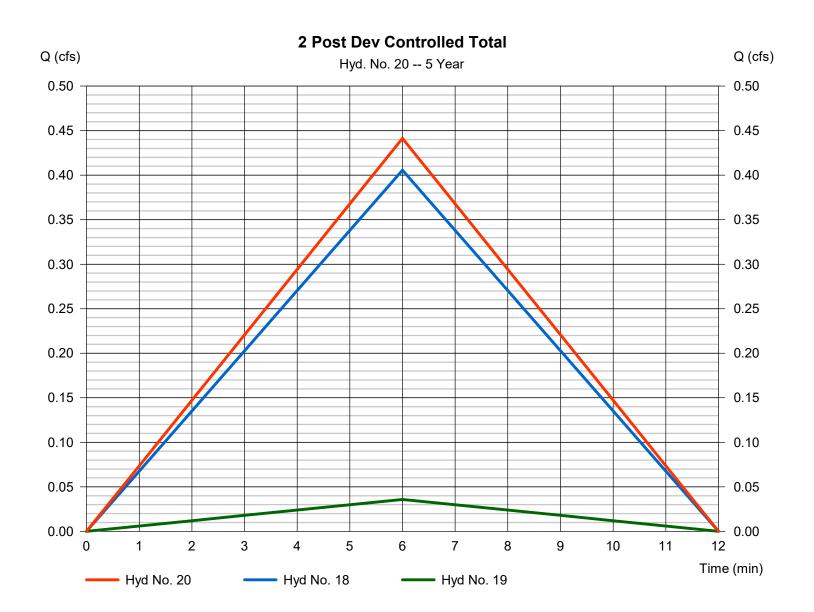
Hydrograph type	= Mod. Rational	Peak discharge	= 0.406 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 146 cuft
Drainage area	= 0.090 ac	Runoff coeff.	= 0.83
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

2 Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.036 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 13 cuft
Drainage area	= 0.060 ac	Runoff coeff.	= 0.11
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

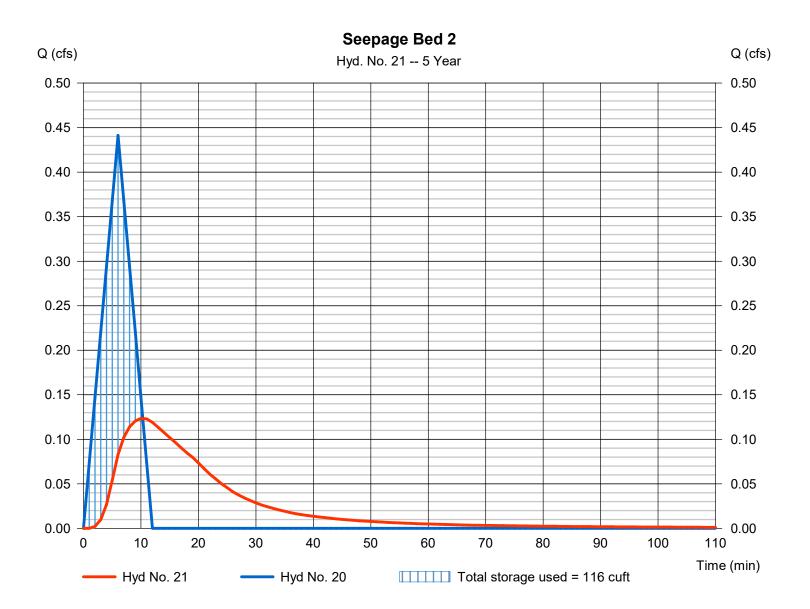


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 0.441 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 159 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 0.150 ac

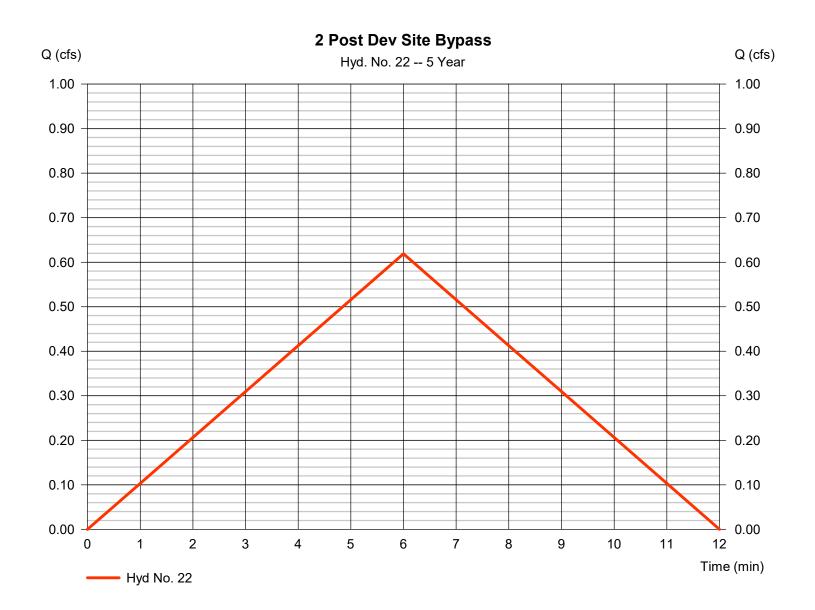

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type	= Reservoir	Peak discharge	= 0.124 cfs
Storm frequency	= 5 yrs	Time to peak	= 10 min
Time interval	 = 1 min = 20 - 2 Post Dev Controlled T = Seepage Bed 2 	Hyd. volume	= 153 cuft
Inflow hyd. No.		ot a lax. Elevation	= 108.40 ft
Reservoir name		Max. Storage	= 116 cuft

Storage Indication method used.

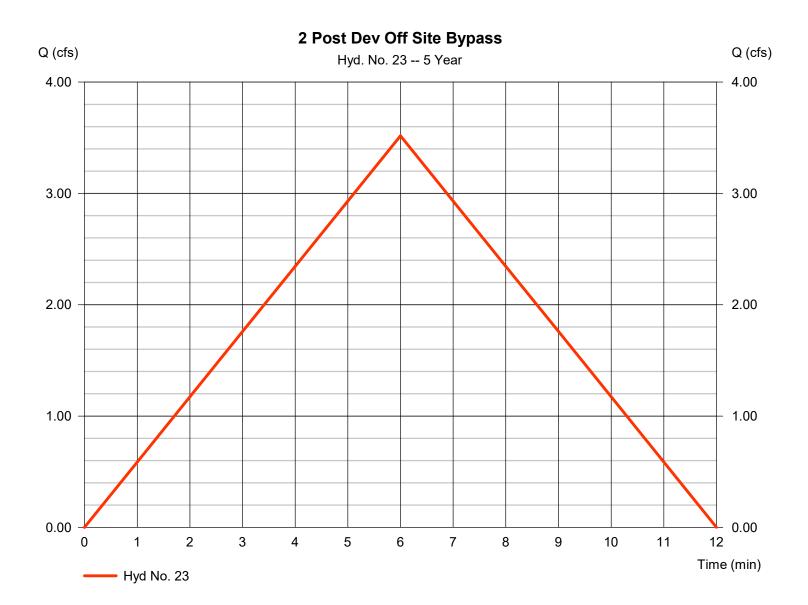


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.619 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 223 cuft
Drainage area	= 0.200 ac	Runoff coeff.	= 0.57
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

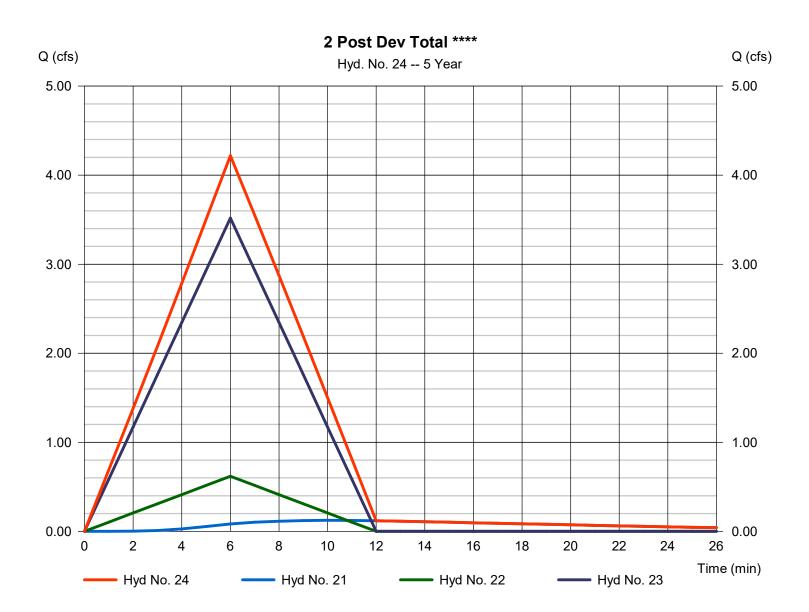


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 3.518 cfs
Storm frequency	= 5 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,267 cuft
Drainage area	= 1.350 ac	Runoff coeff.	= 0.48
Intensity	= 5.429 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a


Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

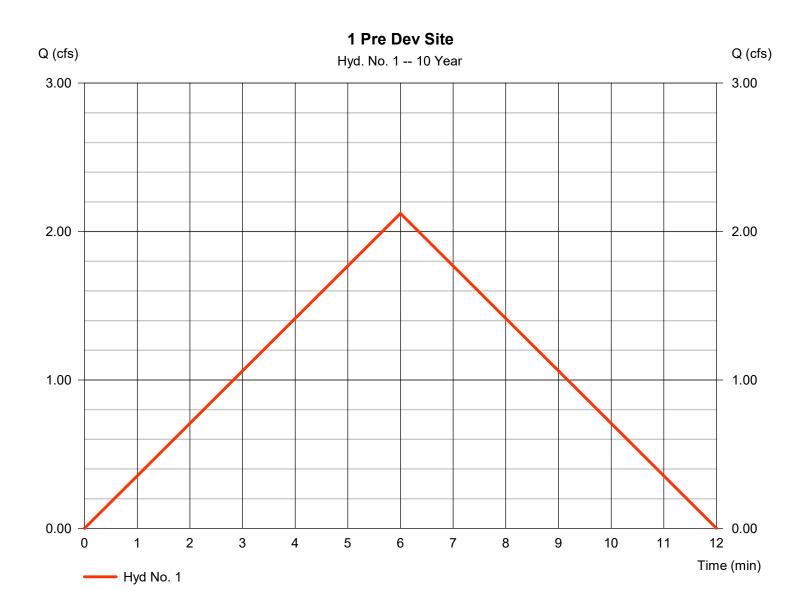
Hyd. No. 24

2 Post Dev Total ****

.220 cfs
min
,642 cuft
.550 ac
,

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

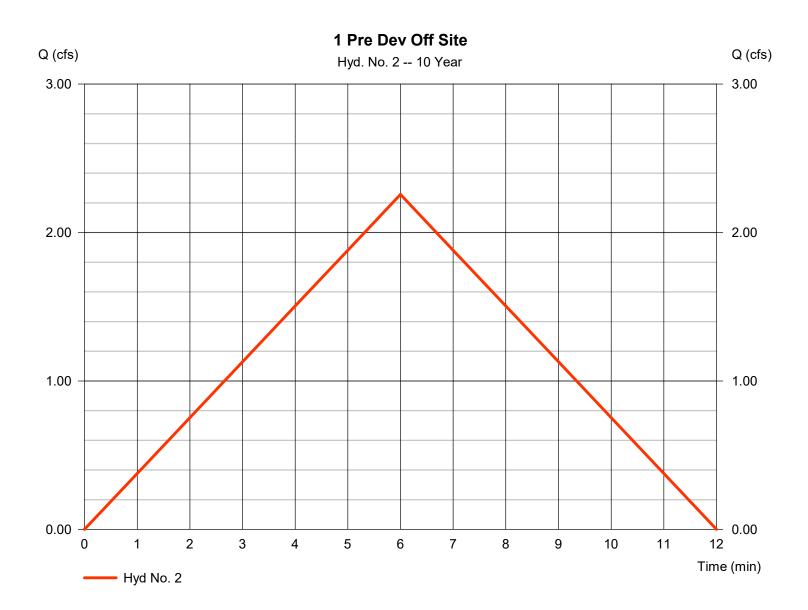

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Mod. Rational	2.122	1	6	764				1 Pre Dev Site
2	Mod. Rational	2.257	1	6	813				1 Pre Dev Off Site
3	Combine	4.379	1	6	1,576	1, 2			1 Pre Dev Total ****
4	Mod. Rational	1.933	1	6	696				1A Post Dev Site
5	Mod. Rational	2.076	1	6	748				1A Post Dev Off Site
6	Combine	4.010	1	6	1,443	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.000	1	12	0	6	127.21	1,432	Seepage Bed 1A
8	Mod. Rational	1.528	1	6	550				1B Post Dev Site
9	Combine	1.528	1	6	550	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.467	1	10	362	9	127.40	382	Seepage Bed 1B
11	Mod. Rational	0.597	1	6	215				1 Post Dev Site Bypass
12	Mod. Rational	0.377	1	6	136				1 Post Dev Off Site Bypass
13	Combine	1.182	1	6	713	10, 11, 12			1 Post Dev Total ****
15	Mod. Rational	0.757	1	7	318				2 Pre Dev Site
16	Mod. Rational	3.946	1	7	1,658				2 Pre Dev Off Site
17	Combine	4.703	1	7	1,975	15, 16			2 Pre Dev Total ****
18	Mod. Rational	0.450	1	6	162				2 Post Dev Site
19	Mod. Rational	0.040	1	6	14				2 Post Dev Off Site
20	Combine	0.489	1	6	176	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.133	1	10	170	20	108.44	129	Seepage Bed 2
22	Mod. Rational	0.686	1	6	247				2 Post Dev Site Bypass
23	Mod. Rational	3.900	1	6	1,404				2 Post Dev Off Site Bypass
24	Combine	4.677	1	6	1,821	21, 22, 23			2 Post Dev Total ****
301	Watersheds	2084 RM	l.gpw		Return F	Period: 10 Y	/ear	Friday, 09	/ 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.122 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 764 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.47
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

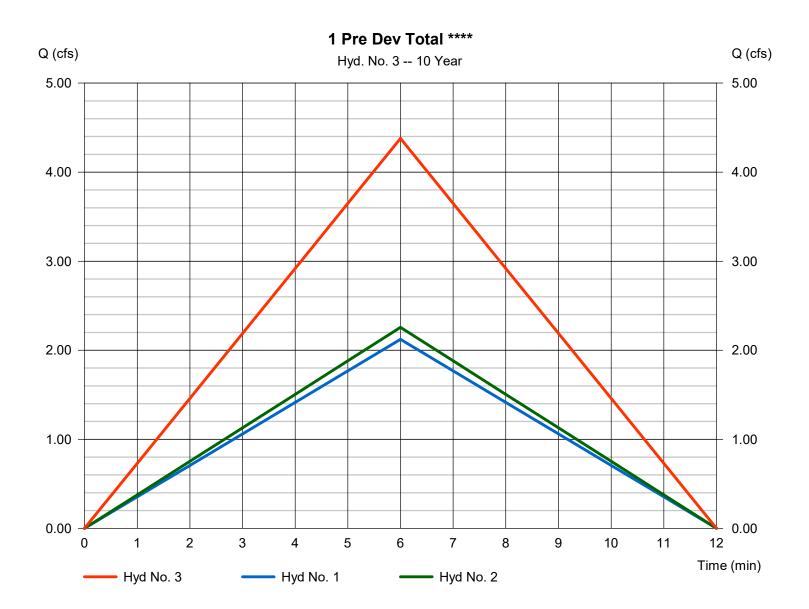


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

1 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.257 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 813 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.5
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

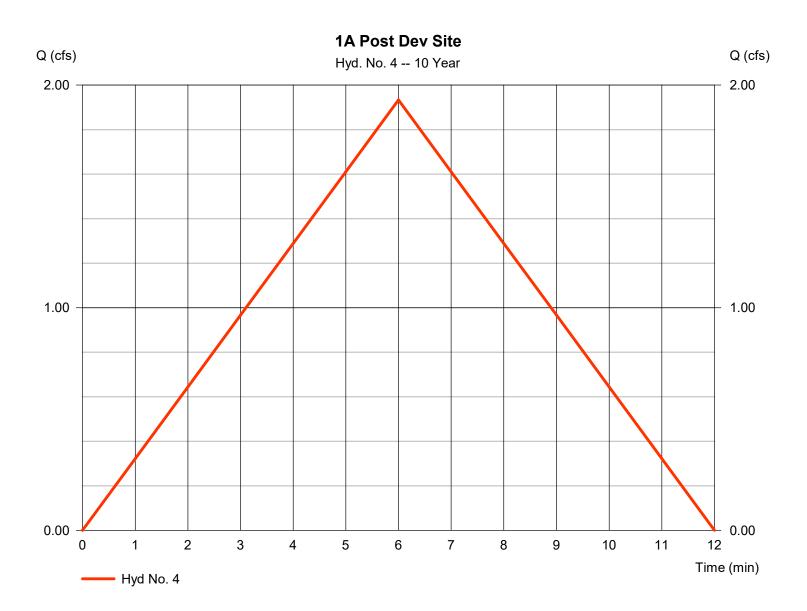


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 4.379 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	$= 1 \min$	Hyd. volume	= 1,576 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 1.500 ac
,			

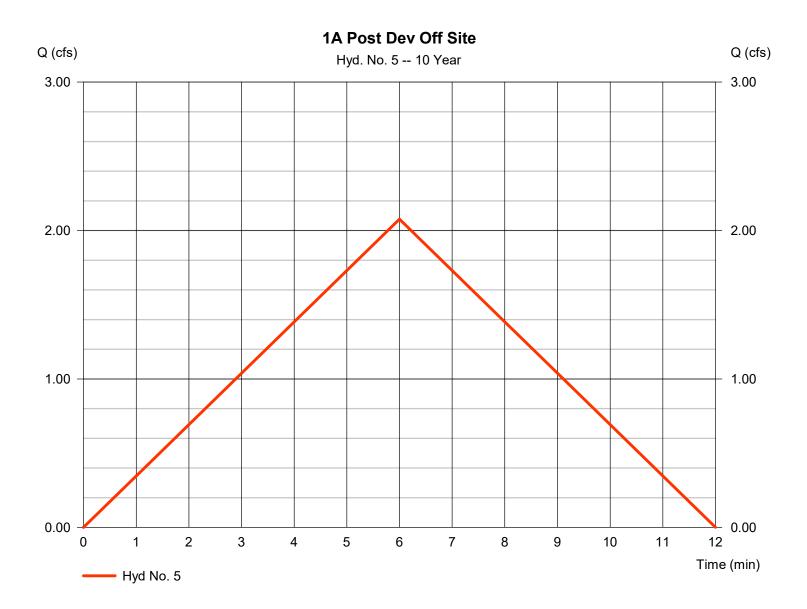


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.933 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 696 cuft
Drainage area	= 0.440 ac	Runoff coeff.	= 0.73
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

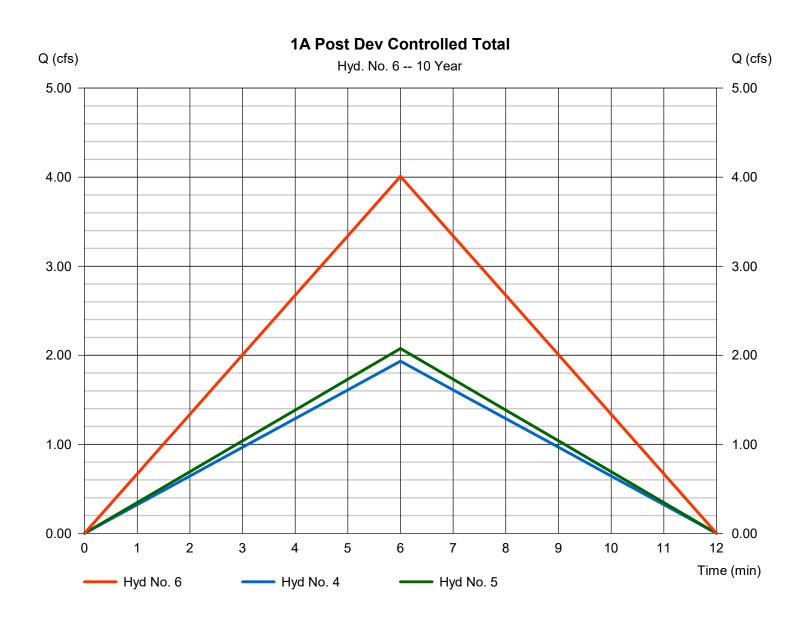


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.076 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 748 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.46
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

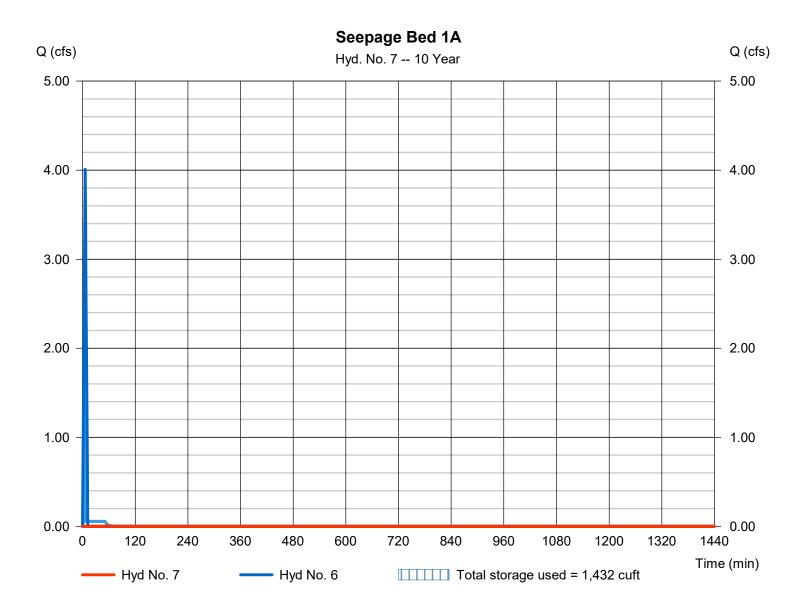


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 4.010 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,443 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 1.190 ac

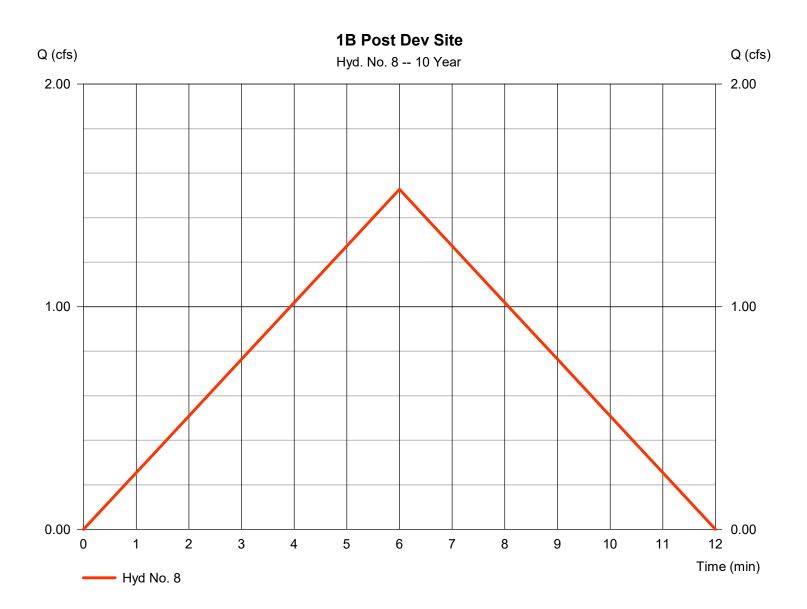

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= 12 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - 1A Post Dev Contr	olled TotMax. Elevation	= 127.21 ft
Reservoir name	= Seepage Bed 1A	Max. Storage	= 1,432 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

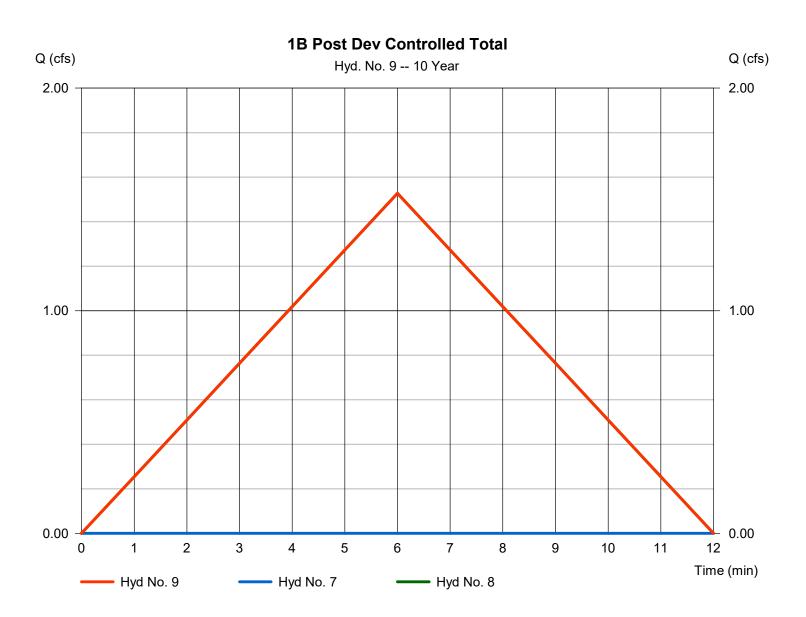


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.528 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 550 cuft
Drainage area	= 0.270 ac	Runoff coeff.	= 0.94
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

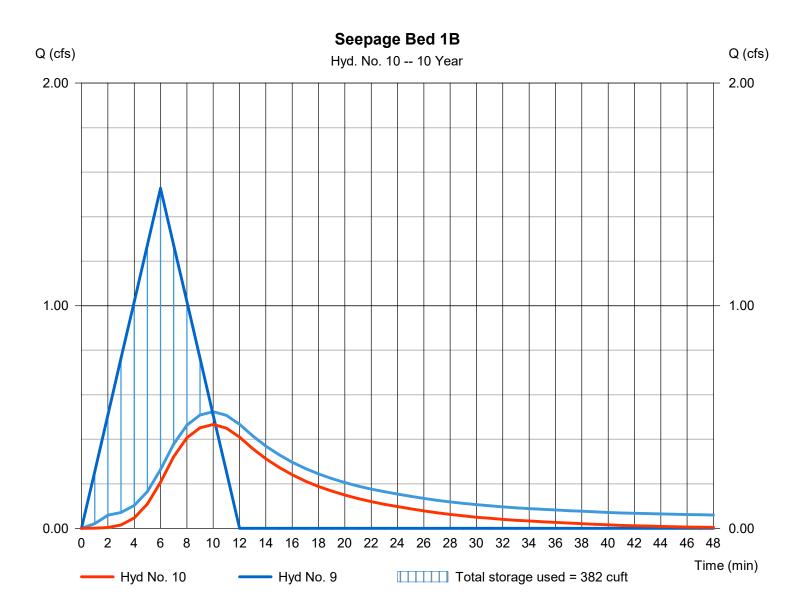


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 1.528 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 550 cuft
Inflow hyds.	= 7, 8	Contrib. drain. area	= 0.270 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type	 Reservoir 10 yrs 1 min 9 - 1B Post Dev Controlled To 	Peak discharge	= 0.467 cfs
Storm frequency		Time to peak	= 10 min
Time interval		Hyd. volume	= 362 cuft
Inflow hyd. No.		ot a lax. Elevation	= 127.40 ft
Reservoir name	= Seepage Bed 1B	Max. Storage	= 382 cuft

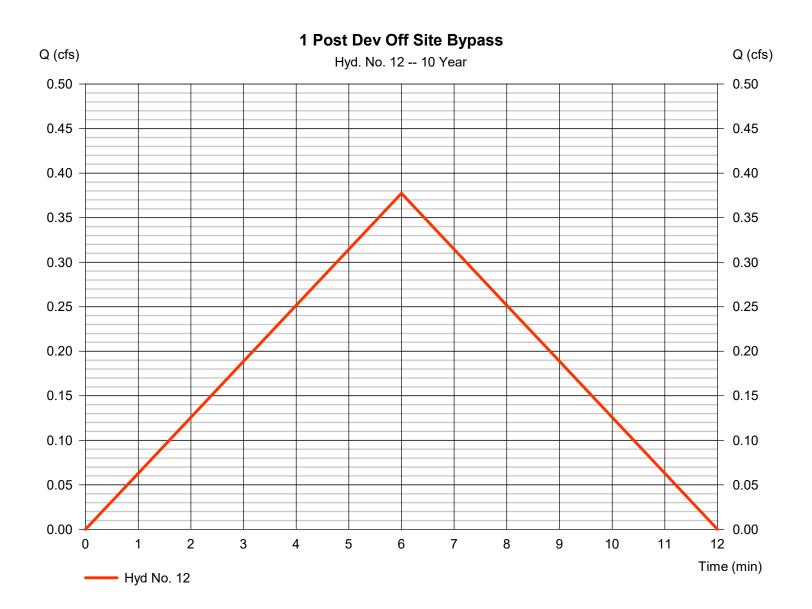
Storage Indication method used. Exfiltration extracted from Outflow.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.597 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 215 cuft
Drainage area	= 0.160 ac	Runoff coeff.	= 0.62
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

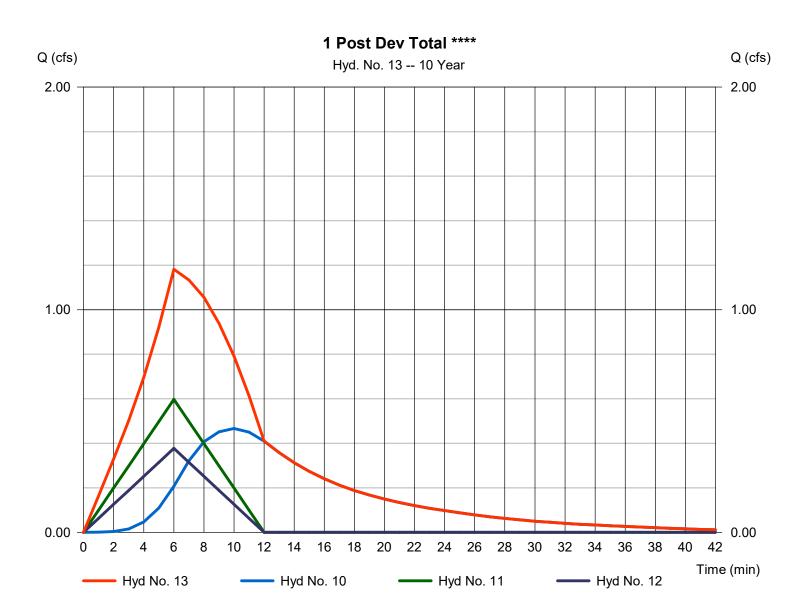


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.377 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 136 cuft
Drainage area	= 0.110 ac	Runoff coeff.	= 0.57
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

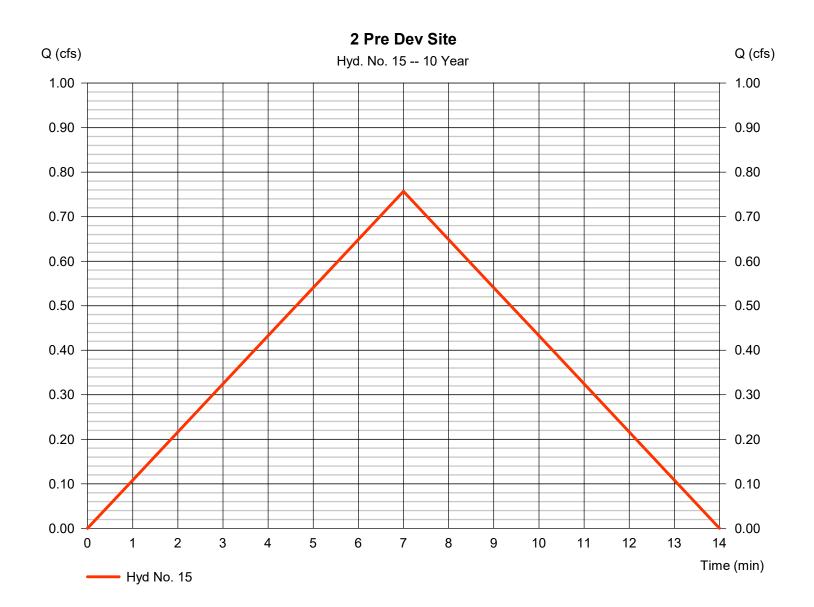

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

= Combine = 10 yrs	Peak discharge Time to peak	= 1.182 cfs = 6 min
= 1 min	Hyd. volume	= 713 cuft
= 10, 11, 12	Contrib. drain. area	= 0.270 ac
	= 10 yrs = 1 min	= 10 yrs Time to peak = 1 min Hyd. volume

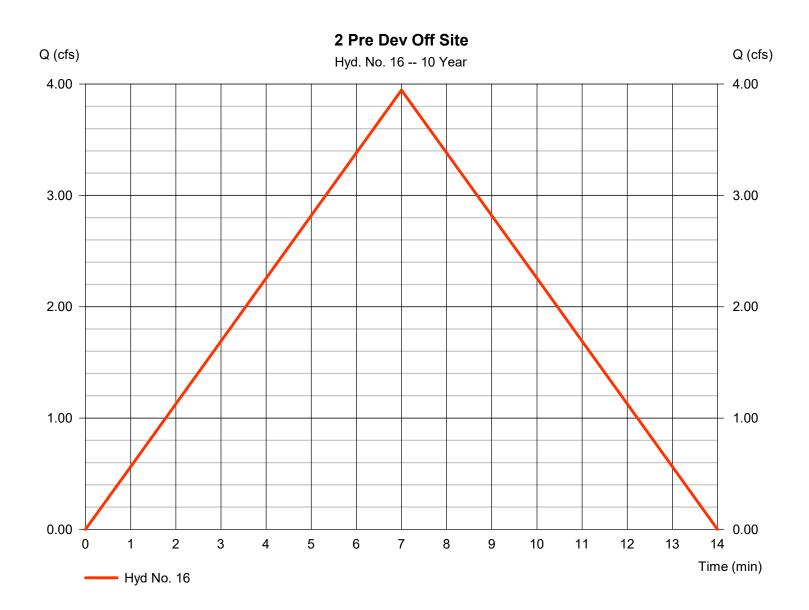

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.757 cfs
Storm frequency	= 10 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 318 cuft
Drainage area	= 0.410 ac	Runoff coeff.	= 0.32
Intensity	= 5.770 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 3.946 cfs
Storm frequency	= 10 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 1,658 cuft
Drainage area	= 1.520 ac	Runoff coeff.	= 0.45
Intensity	= 5.770 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

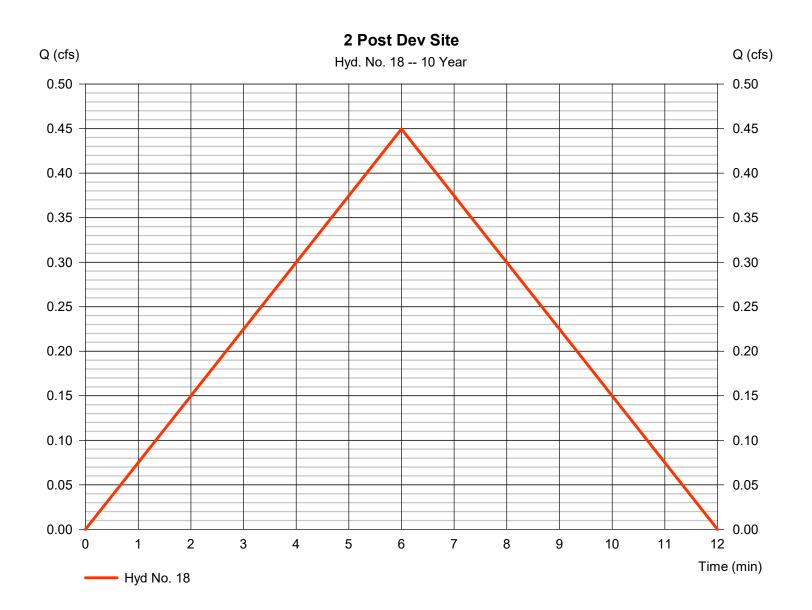

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 4.703 cfs = 7 min
Time interval	= 1 min	Hyd. volume	= 1,975 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.450 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 162 cuft
Drainage area	= 0.090 ac	Runoff coeff.	= 0.83
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

2 Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.040 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 14 cuft
Drainage area	= 0.060 ac	Runoff coeff.	= 0.11
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

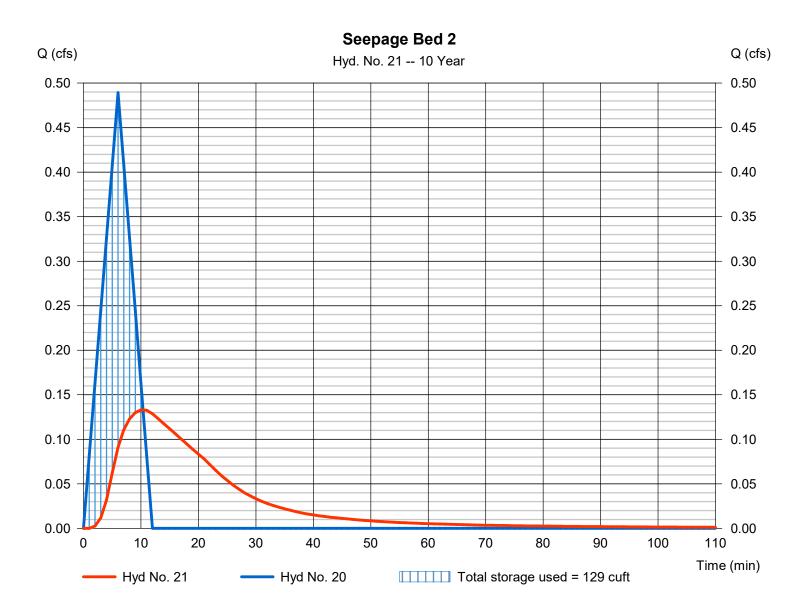
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total

Hydrograph type	 Combine 10 yrs 1 min 18, 19 	Peak discharge	= 0.489 cfs
Storm frequency		Time to peak	= 6 min
Time interval		Hyd. volume	= 176 cuft
Inflow hyds.		Contrib. drain. area	= 0.150 ac
innow nyas.	- 10, 10		- 0.100 40

Friday, 09 / 22 / 2023

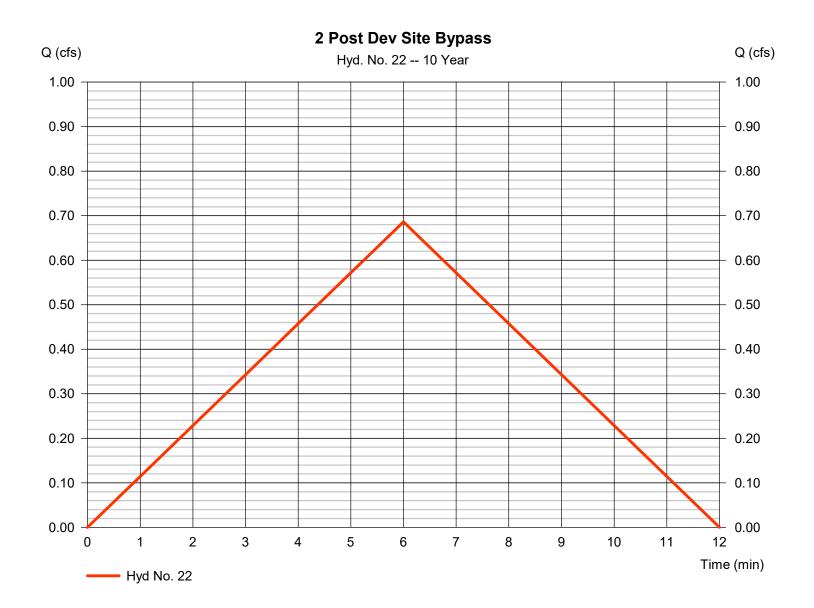

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type	= Reservoir	Peak discharge	= 0.133 cfs
Storm frequency	= 10 yrs	Time to peak	= 10 min
Time interval	= 1 min	Hyd. volume	= 170 cuft
Inflow hyd. No.	= 20 - 2 Post Dev Controlled		= 108.44 ft
Reservoir name	= Seepage Bed 2	Max. Storage	= 129 cuft

Storage Indication method used.

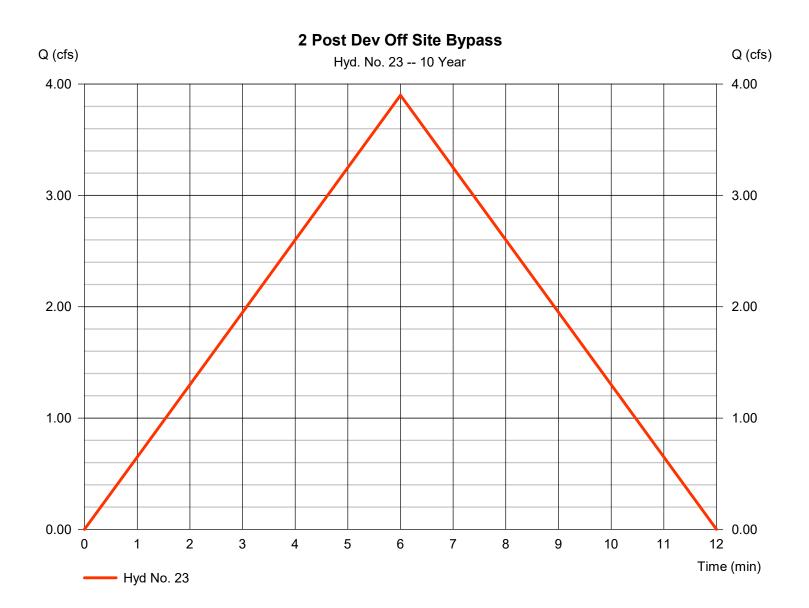


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.686 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 247 cuft
Drainage area	= 0.200 ac	Runoff coeff.	= 0.57
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

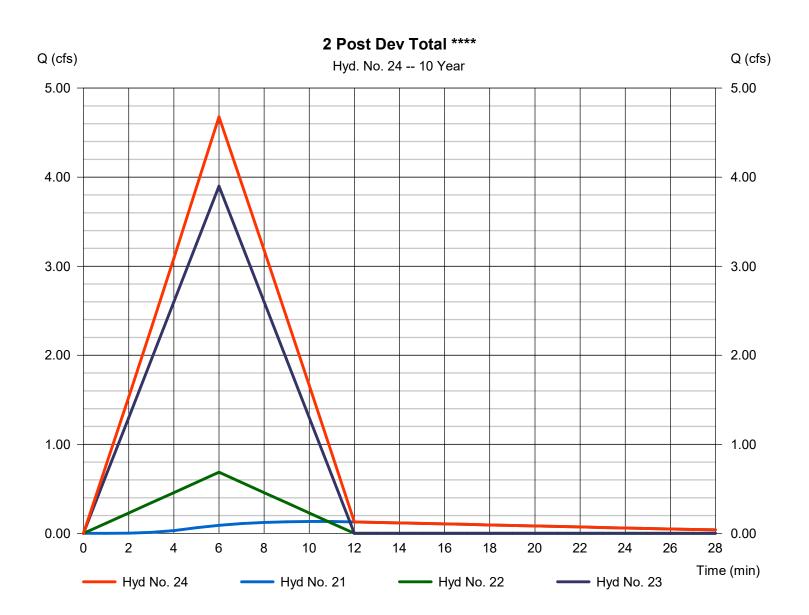


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 3.900 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,404 cuft
Drainage area	= 1.350 ac	Runoff coeff.	= 0.48
Intensity	= 6.019 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

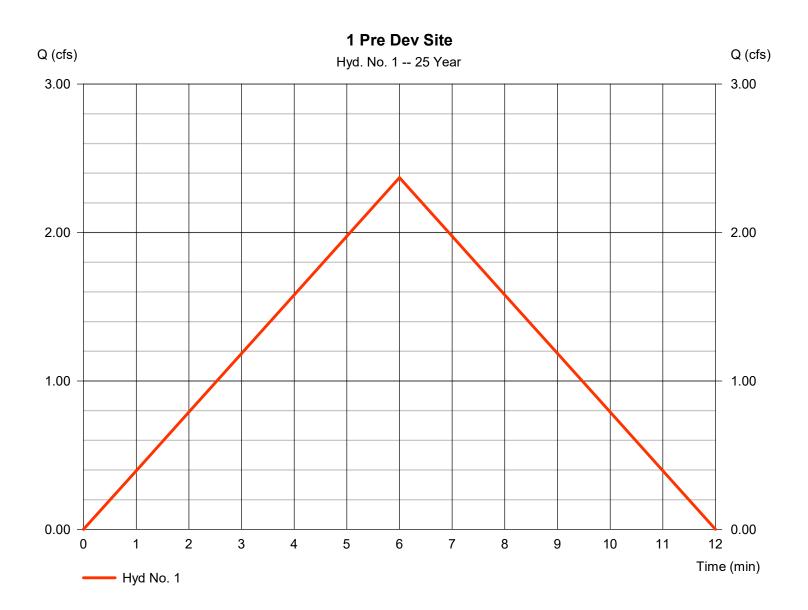
Hyd. No. 24

2 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 4.677 cfs
Storm frequency	= 10 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,821 cuft
Inflow hyds.	= 21, 22, 23	Contrib. drain. area	= 1.550 ac

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

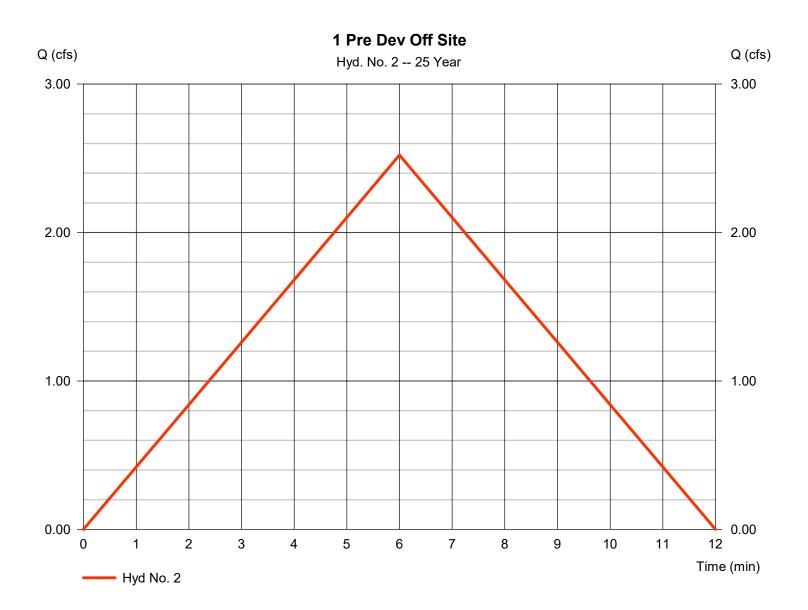

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Mod. Rational	2.370	1	6	853				1 Pre Dev Site
2	Mod. Rational	2.521	1	6	908				1 Pre Dev Off Site
3	Combine	4.892	1	6	1,761	1, 2			1 Pre Dev Total ****
4	Mod. Rational	2.160	1	6	778				1A Post Dev Site
5	Mod. Rational	2.320	1	6	835				1A Post Dev Off Site
6	Combine	4.480	1	6	1,613	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.000	1	164	0	6	127.36	1,601	Seepage Bed 1A
8	Mod. Rational	1.707	1	6	614				1B Post Dev Site
9	Combine	1.707	1	6	614	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.549	1	10	422	9	127.44	421	Seepage Bed 1B
11	Mod. Rational	0.667	1	6	240				1 Post Dev Site Bypass
12	Mod. Rational	0.422	1	6	152				1 Post Dev Off Site Bypass
13	Combine	1.343	1	6	814	10, 11, 12			1 Post Dev Total ****
15	Mod. Rational	0.846	1	7	355				2 Pre Dev Site
16	Mod. Rational	4.409	1	7	1,852				2 Pre Dev Off Site
17	Combine	5.255	1	7	2,207	15, 16			2 Pre Dev Total ****
18	Mod. Rational	0.502	1	6	181				2 Post Dev Site
19	Mod. Rational	0.044	1	6	16				2 Post Dev Off Site
20	Combine	0.547	1	6	197	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.144	1	10	191	20	108.49	144	Seepage Bed 2
22	Mod. Rational	0.767	1	6	276				2 Post Dev Site Bypass
23	Mod. Rational	4.357	1	6	1,569				2 Post Dev Off Site Bypass
24	Combine	5.224	1	6	2,035	21, 22, 23			2 Post Dev Total ****
301	301 Watersheds 2084 RM.gpw		Return F	Period: 25 Y	/ ear	Friday, 09 /	/ 22 / 2023		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.370 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 853 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.47
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

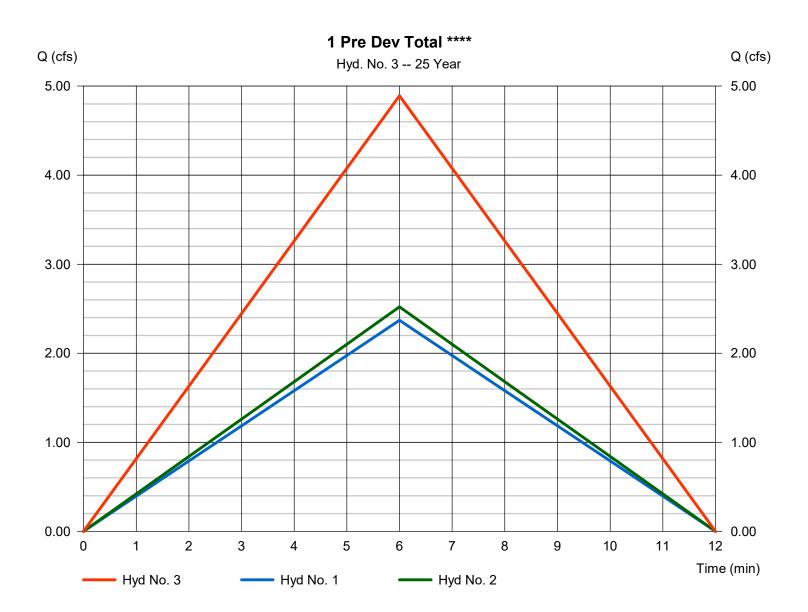


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

1 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.521 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 908 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.5
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

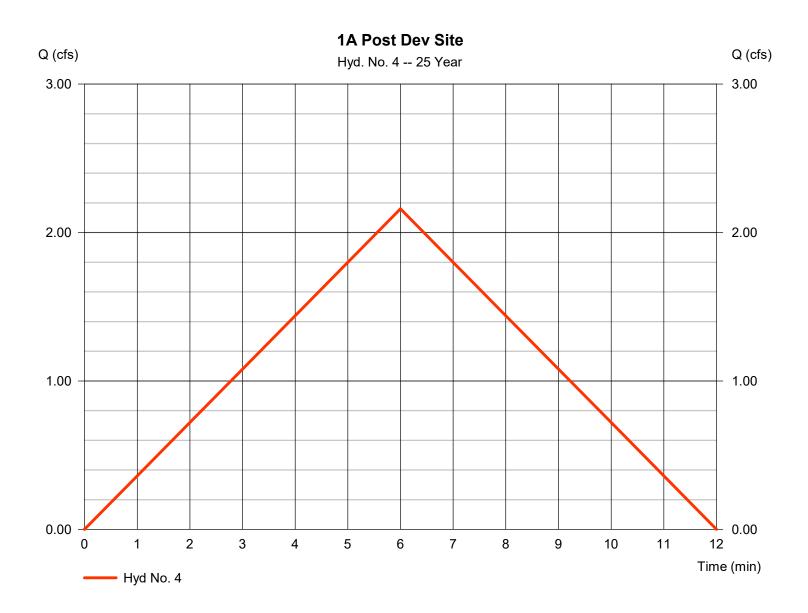

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 4.892 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,761 cuft
Inflow hyds.	= 1.2	Contrib. drain. area	= 1,500 ac
······ ··· ··· ·· ·· ·· ·· ·· ·· ·· ··	-, _		

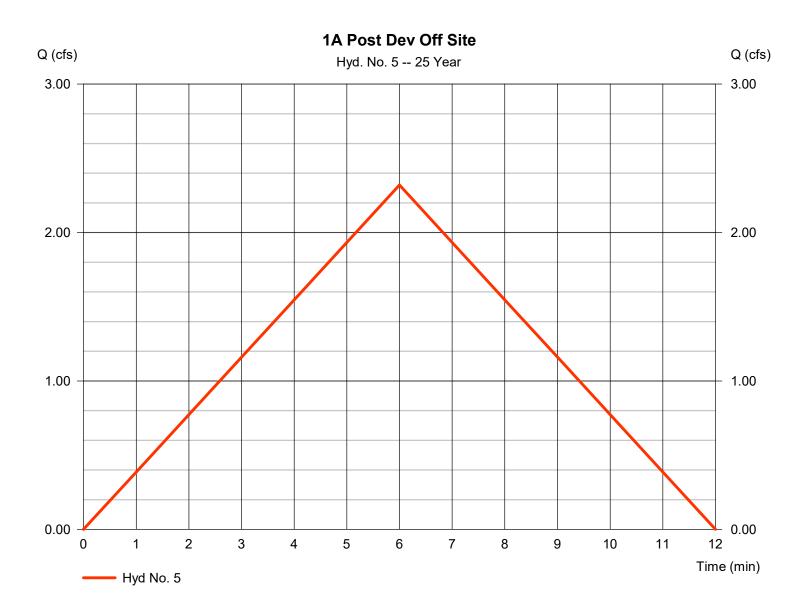


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.160 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 778 cuft
Drainage area	= 0.440 ac	Runoff coeff.	= 0.73
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

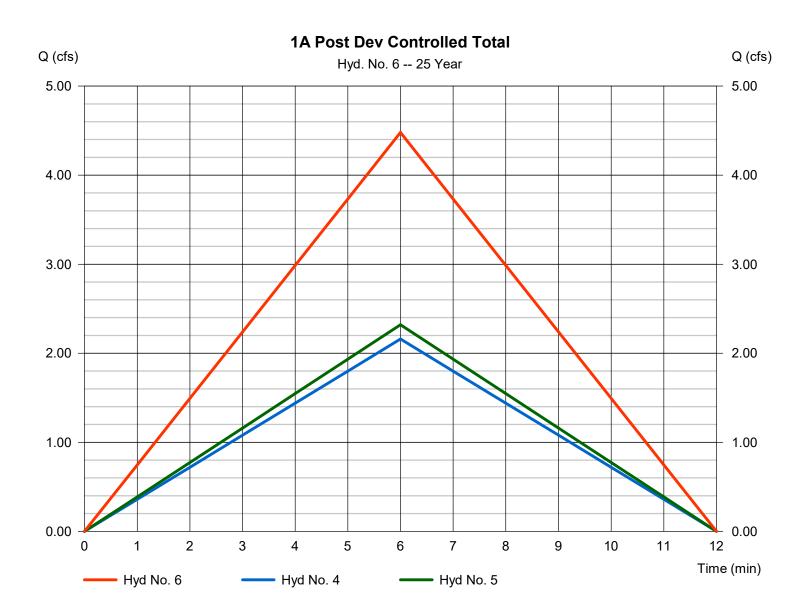


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.320 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 835 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.46
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

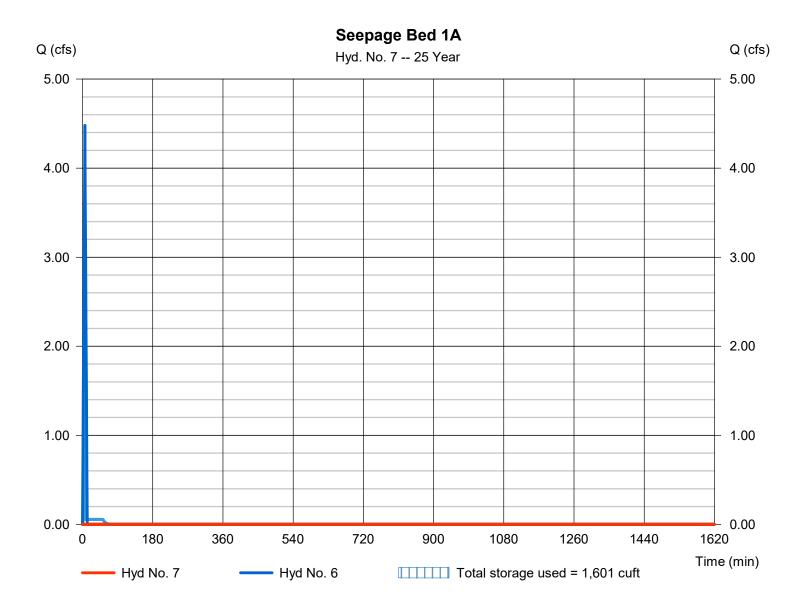


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 4.480 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,613 cuft
Inflow hyds.	= 4,5	Contrib. drain. area	= 1.190 ac

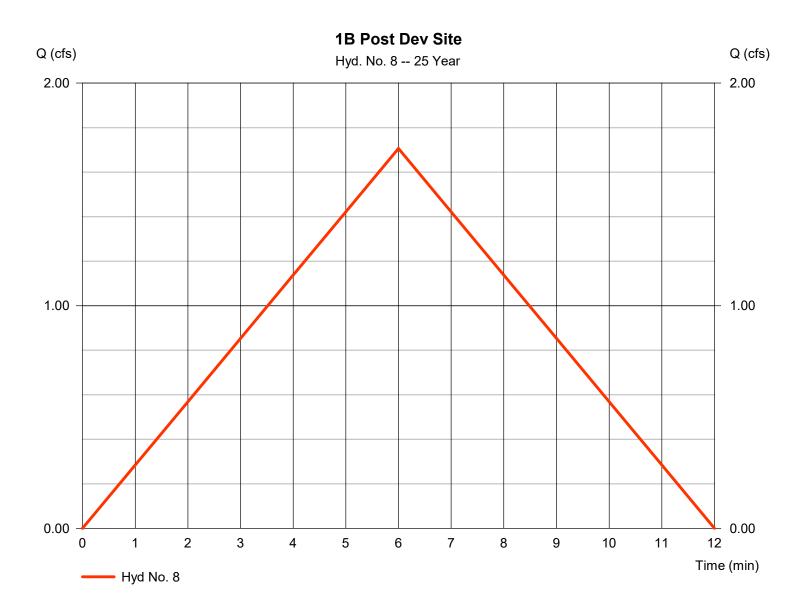

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 25 yrs	Time to peak	= 164 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - 1A Post Dev Controlled	Tot M ax. Elevation	= 127.36 ft
Reservoir name	= Seepage Bed 1A	Max. Storage	= 1,601 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

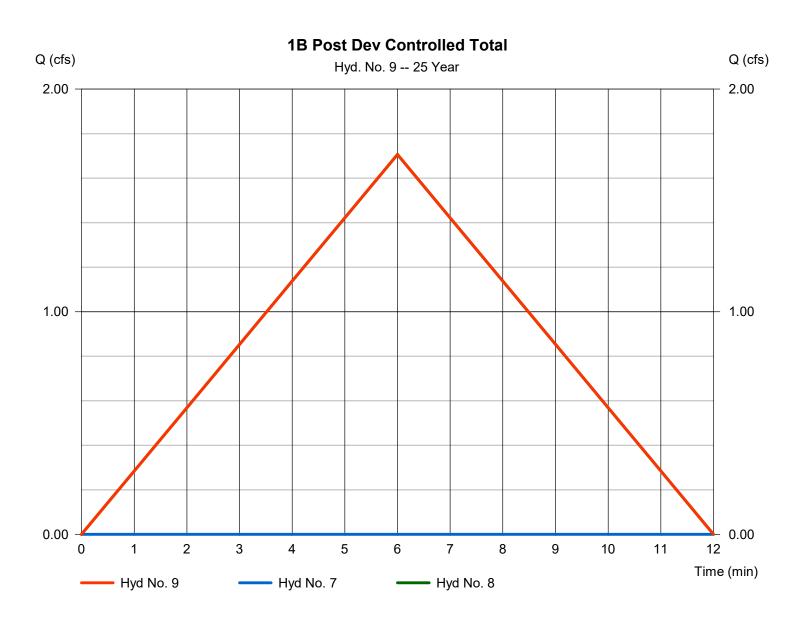

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.707 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 614 cuft
Drainage area	= 0.270 ac	Runoff coeff.	= 0.94
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



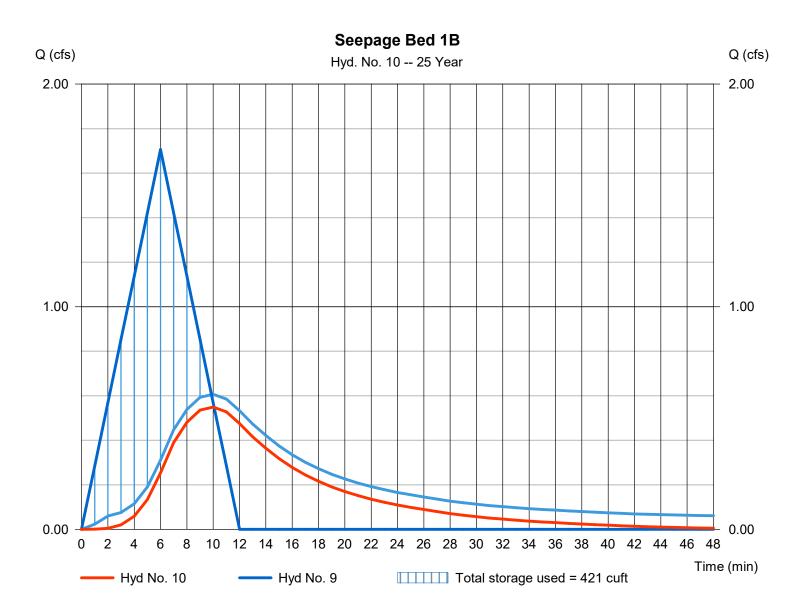
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 1.707 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 614 cuft
Inflow hyds.	= 7,8	Contrib. drain. area	= 0.270 ac

Friday, 09 / 22 / 2023

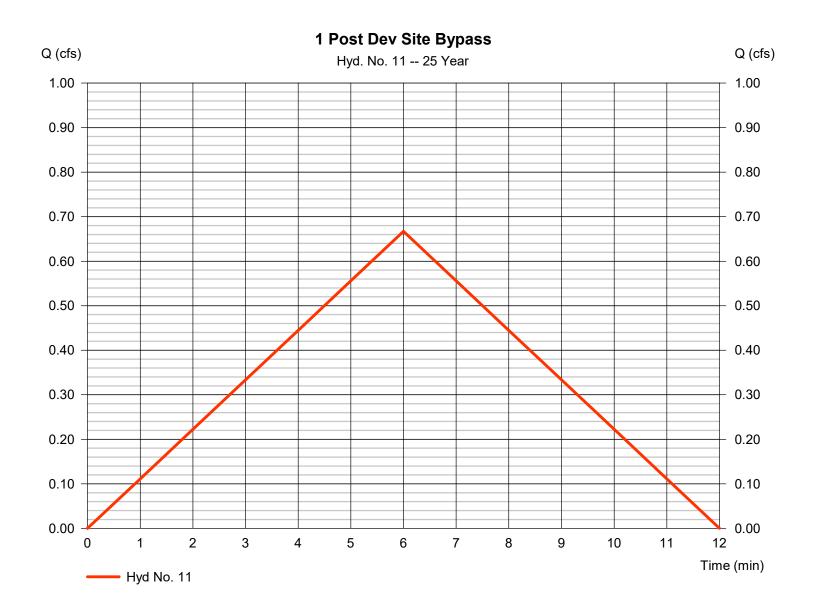

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 25 yrs 1 min 9 - 1B Post Dev Controlled Termin 		= 0.549 cfs = 10 min = 422 cuft = 127.44 ft
Reservoir name	= Seepage Bed 1B	Max. Storage	= 421 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

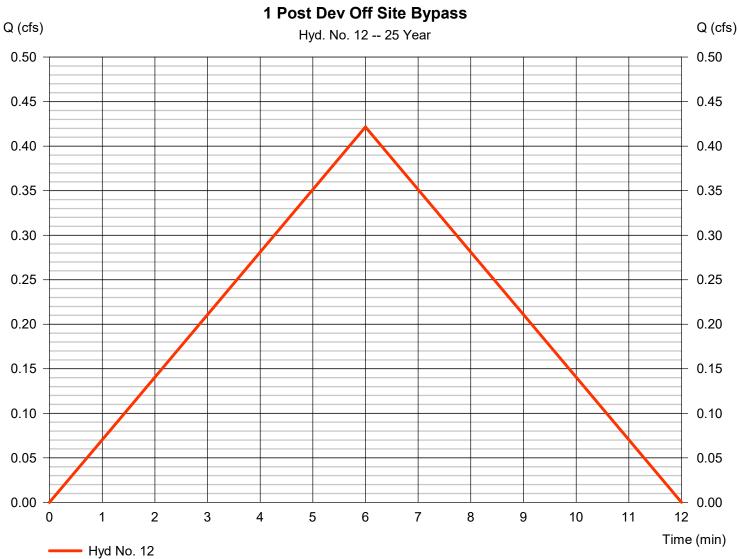


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.667 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 240 cuft
Drainage area	= 0.160 ac	Runoff coeff.	= 0.62
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

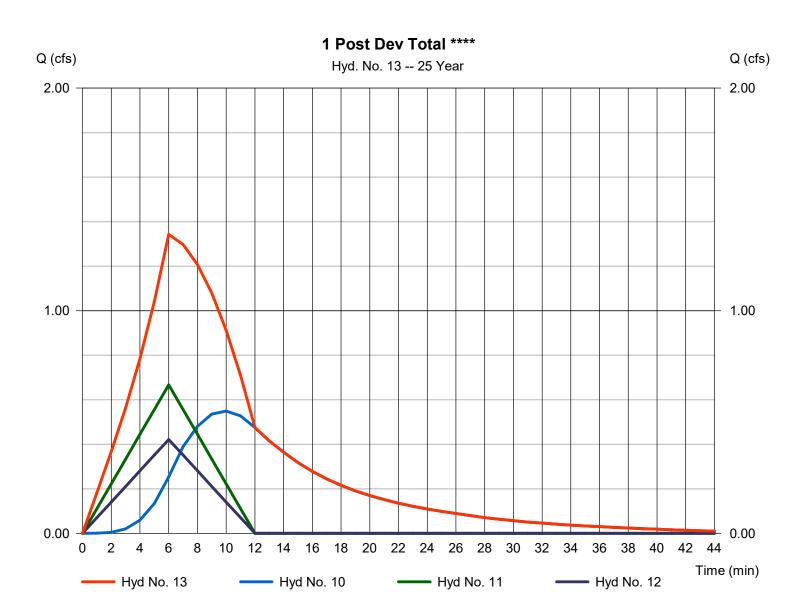


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.422 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 152 cuft
Drainage area	= 0.110 ac	Runoff coeff.	= 0.57
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

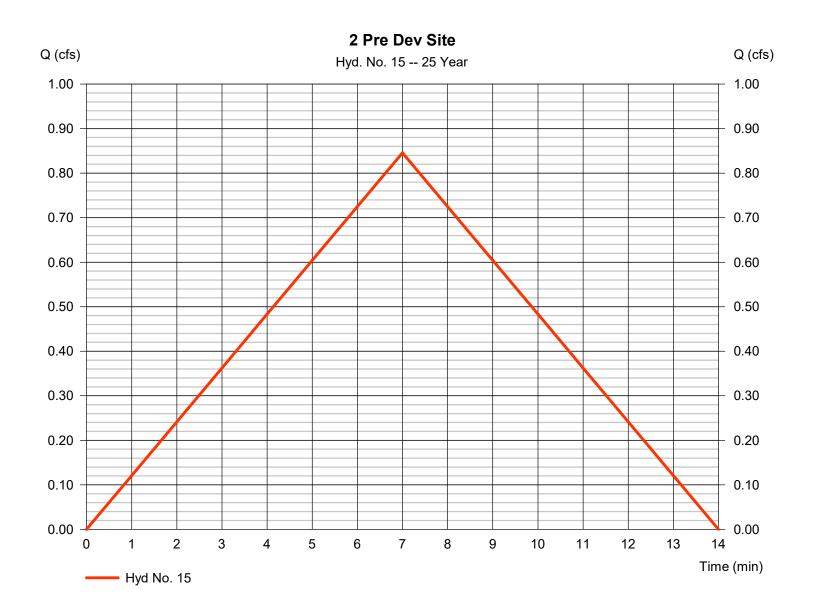


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 1.343 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 814 cuft
Inflow hyds.	= 10, 11, 12	Contrib. drain. area	= 0.270 ac
inite in Figure 1	,, .=		0.210 40

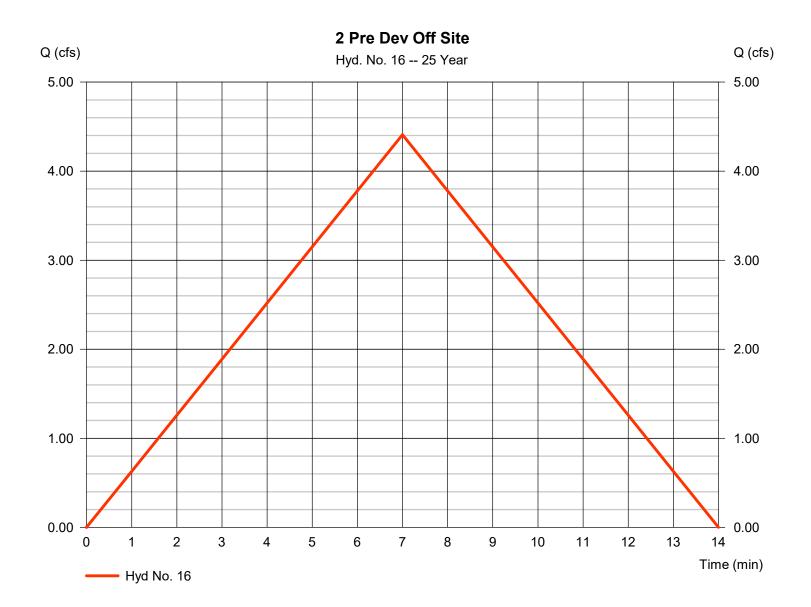


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.846 cfs
Storm frequency	= 25 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 355 cuft
Drainage area	= 0.410 ac	Runoff coeff.	= 0.32
Intensity	= 6.446 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

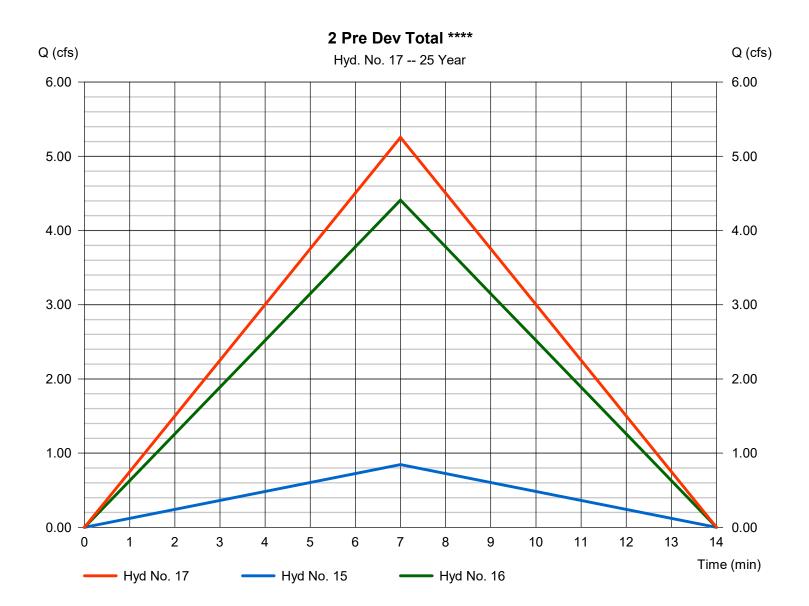


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 4.409 cfs
Storm frequency	= 25 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 1,852 cuft
Drainage area	= 1.520 ac	Runoff coeff.	= 0.45
Intensity	= 6.446 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

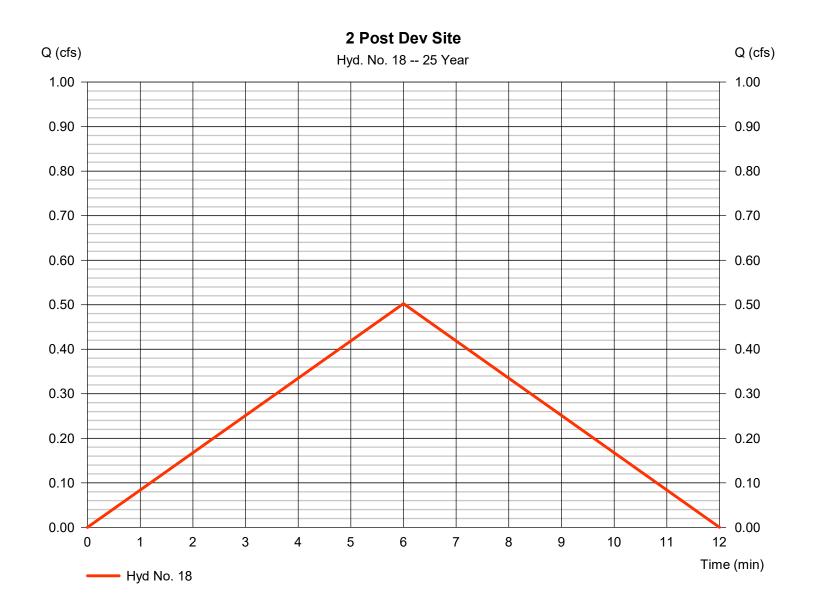

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 5.255 cfs
Storm frequency	= 25 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 2,207 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac
inited Hydel	10, 10		

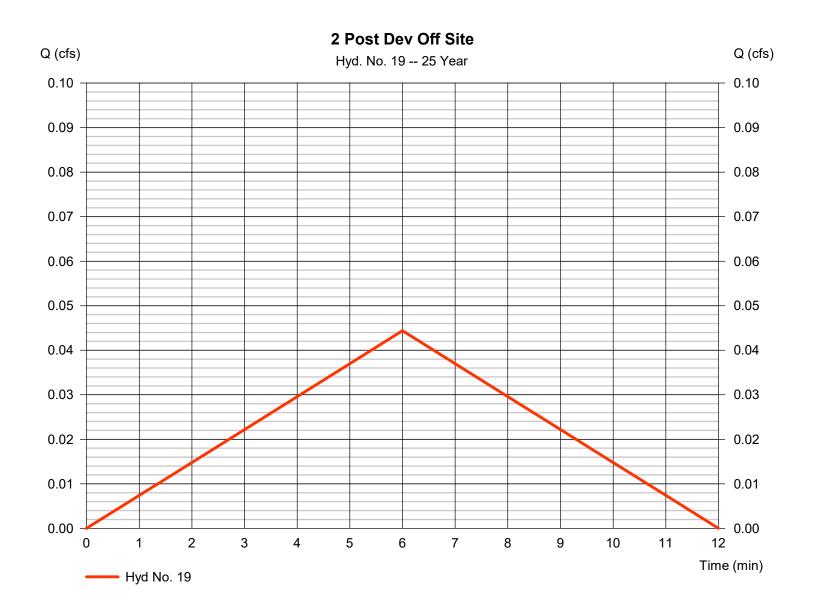

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.502 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 181 cuft
Drainage area	= 0.090 ac	Runoff coeff.	= 0.83
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

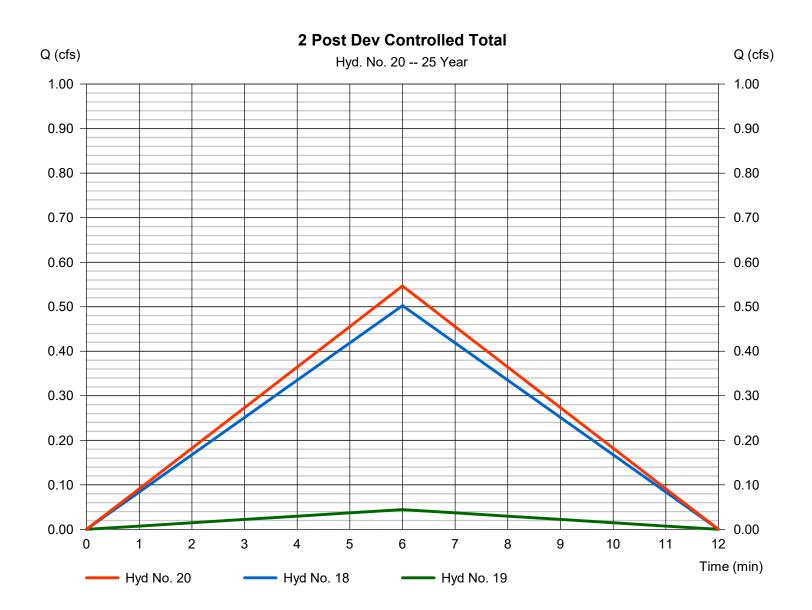


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

2 Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.044 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 16 cuft
Drainage area	= 0.060 ac	Runoff coeff.	= 0.11
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

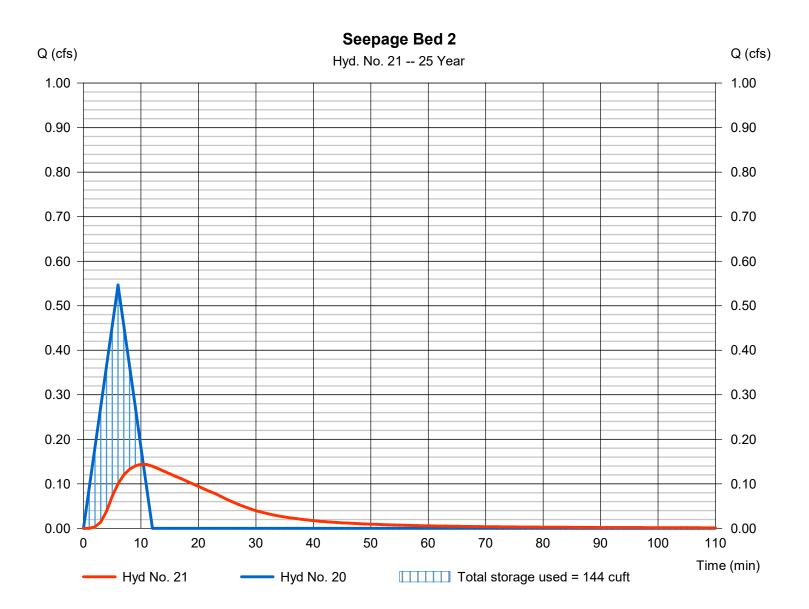


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 0.547 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 197 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 0.150 ac
3	- , -	-	

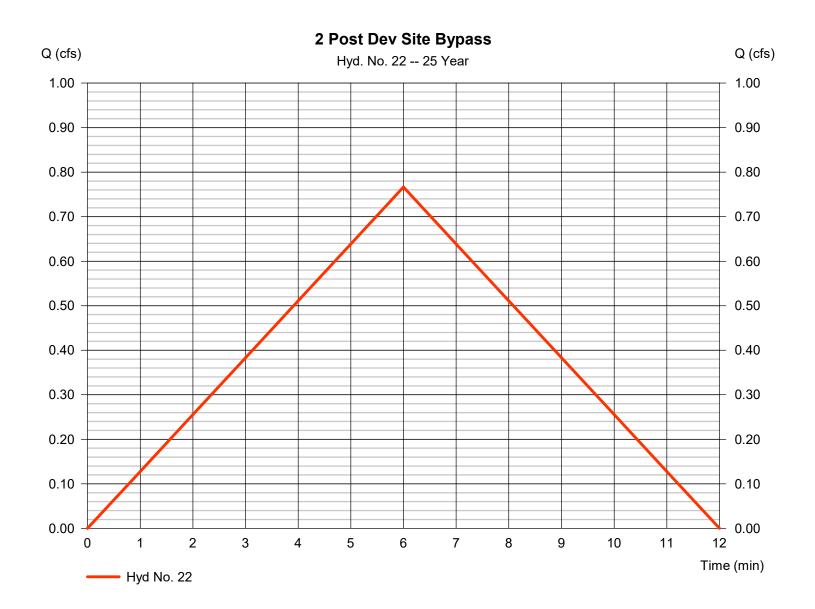

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type Storm frequency	= Reservoir = 25 yrs	Peak discharge Time to peak	= 0.144 cfs = 10 min
Time interval	= 1 min	Hyd. volume	= 191 cuft
Inflow hyd. No. Reservoir name	= 20 - 2 Post Dev Control= Seepage Bed 2	Max. Elevation	= 108.49 ft = 144 cuft

Storage Indication method used.

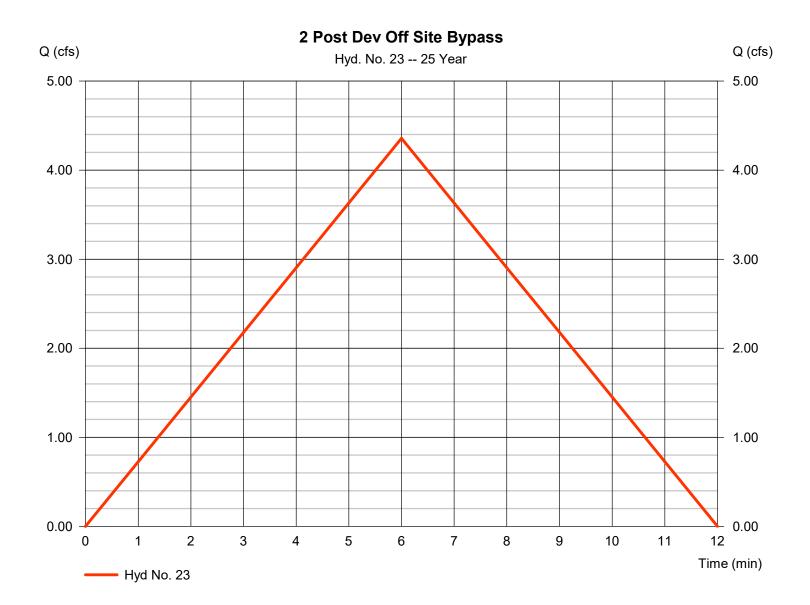

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.767 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 276 cuft
Drainage area	= 0.200 ac	Runoff coeff.	= 0.57
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

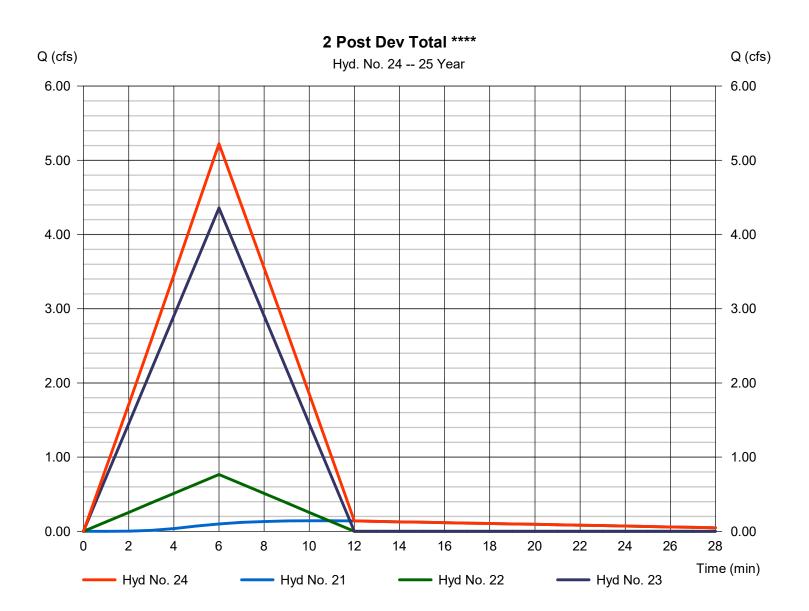


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 4.357 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,569 cuft
Drainage area	= 1.350 ac	Runoff coeff.	= 0.48
Intensity	= 6.724 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



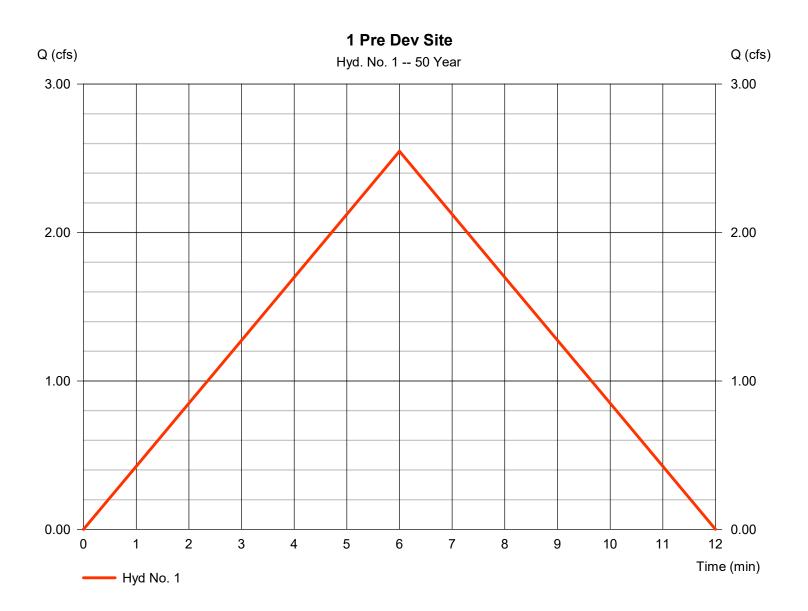
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 24

2 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 5.224 cfs
Storm frequency	= 25 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 2,035 cuft
Inflow hyds.	= 21, 22, 23	Contrib. drain. area	= 1.550 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

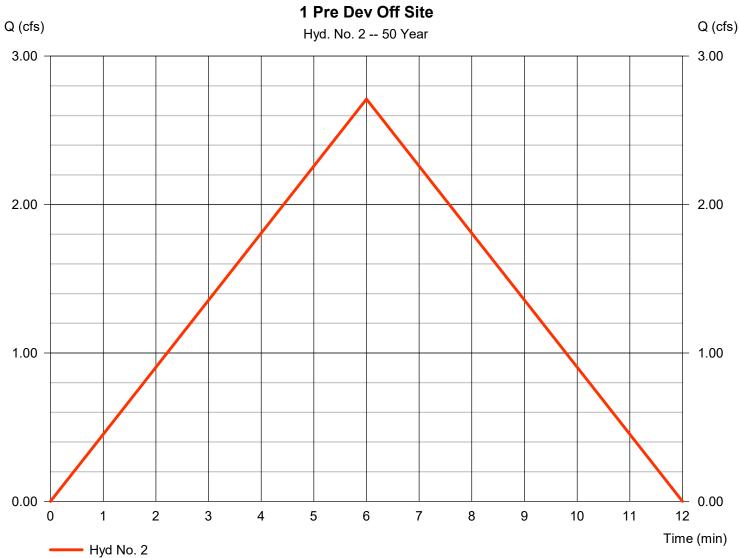

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Mod. Rational	2.548	1	6	917				1 Pre Dev Site
2	Mod. Rational	2.710	1	6	976				1 Pre Dev Off Site
3	Combine	5.258	1	6	1,893	1, 2			1 Pre Dev Total ****
4	Mod. Rational	2.322	1	6	836				1A Post Dev Site
5	Mod. Rational	2.494	1	6	898				1A Post Dev Off Site
6	Combine	4.815	1	6	1,733	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.000	1	12	0	6	127.46	1,722	Seepage Bed 1A
8	Mod. Rational	1.834	1	6	660				1B Post Dev Site
9	Combine	1.834	1	6	660	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.610	1	10	466	9	127.47	449	Seepage Bed 1B
11	Mod. Rational	0.717	1	6	258				1 Post Dev Site Bypass
12	Mod. Rational	0.453	1	6	163				1 Post Dev Off Site Bypass
13	Combine	1.460	1	6	887	10, 11, 12			1 Post Dev Total ****
15	Mod. Rational	0.910	1	7	382				2 Pre Dev Site
16	Mod. Rational	4.742	1	7	1,992				2 Pre Dev Off Site
17	Combine	5.651	1	7	2,374	15, 16			2 Pre Dev Total ****
18	Mod. Rational	0.540	1	6	194				2 Post Dev Site
19	Mod. Rational	0.048	1	6	17				2 Post Dev Off Site
20	Combine	0.588	1	6	212	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.151	1	10	206	20	108.53	156	Seepage Bed 2
22	Mod. Rational	0.824	1	6	297				2 Post Dev Site Bypass
23	Mod. Rational	4.684	1	6	1,686				2 Post Dev Off Site Bypass
24	Combine	5.613	1	6	2,188	21, 22, 23			2 Post Dev Total ****
301	Watersheds	2084 RM	Л.gpw		Return I	Period: 50 Y	/ear	Friday, 09	/ 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.548 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 917 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.47
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

1 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.710 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 976 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.5
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

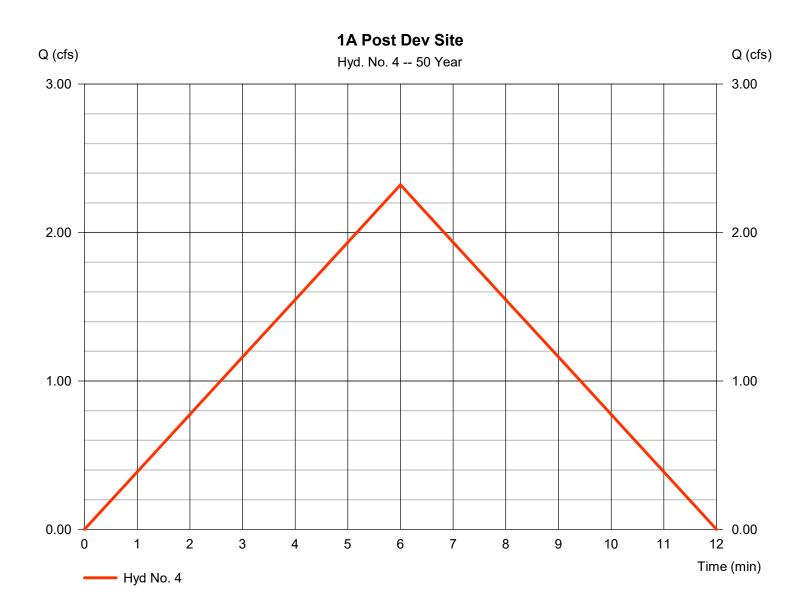


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 5.258 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,893 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 1.500 ac
innew nyde.	1, 2		1.000 40

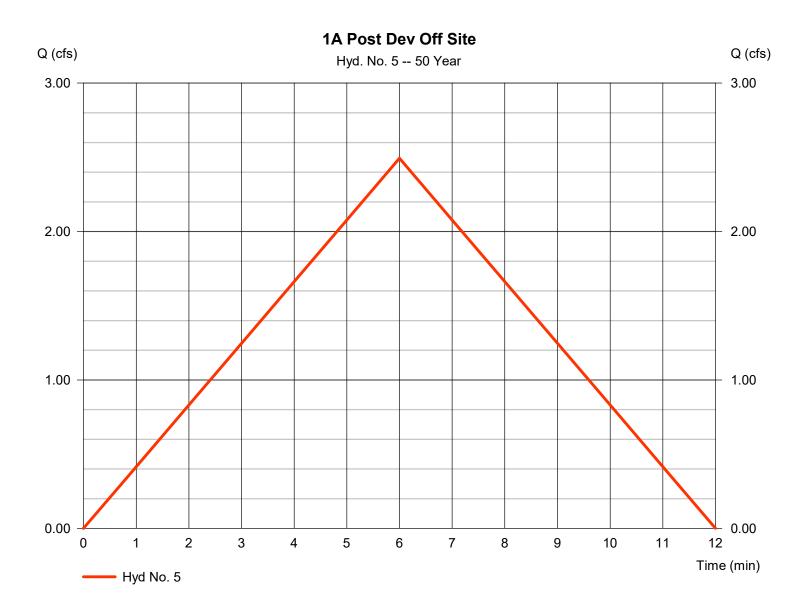

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.322 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 836 cuft
Drainage area	= 0.440 ac	Runoff coeff.	= 0.73
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

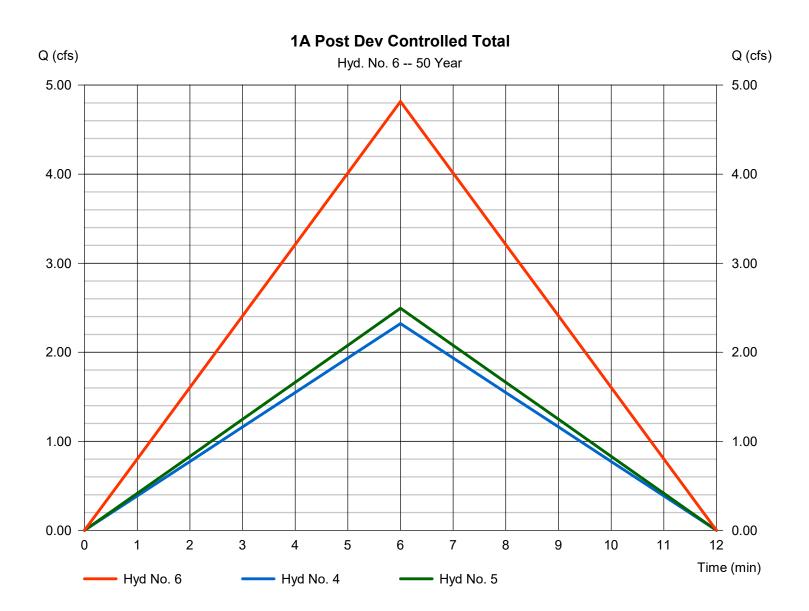


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.494 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 898 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.46
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 4.815 cfs
Storm frequency Time interval	= 50 yrs = 1 min	Time to peak Hyd. volume	= 6 min = 1,733 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 1.190 ac

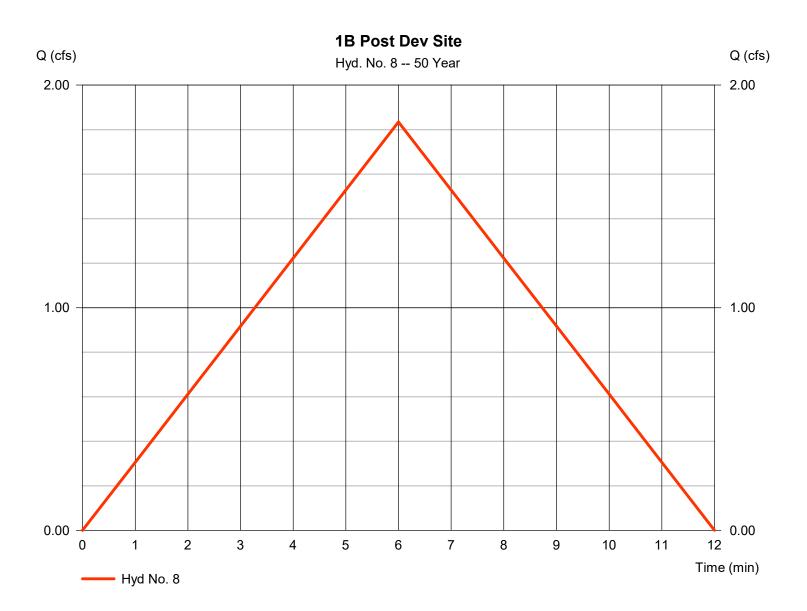
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 50 yrs	Time to peak	= 12 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - 1A Post Dev Cont	rolled TotMax. Elevation	= 127.46 ft
Reservoir name	= Seepage Bed 1A	Max. Storage	= 1,722 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

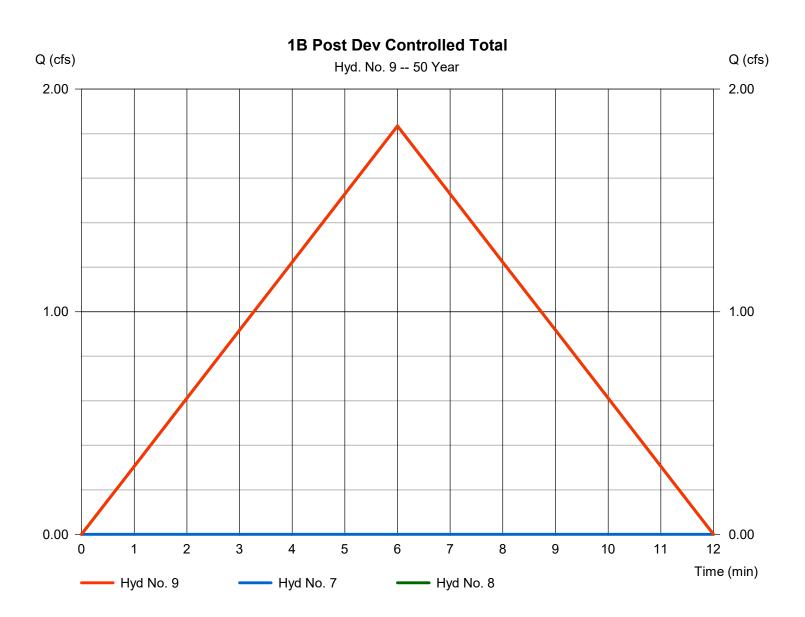


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.834 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 660 cuft
Drainage area	= 0.270 ac	Runoff coeff.	= 0.94
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

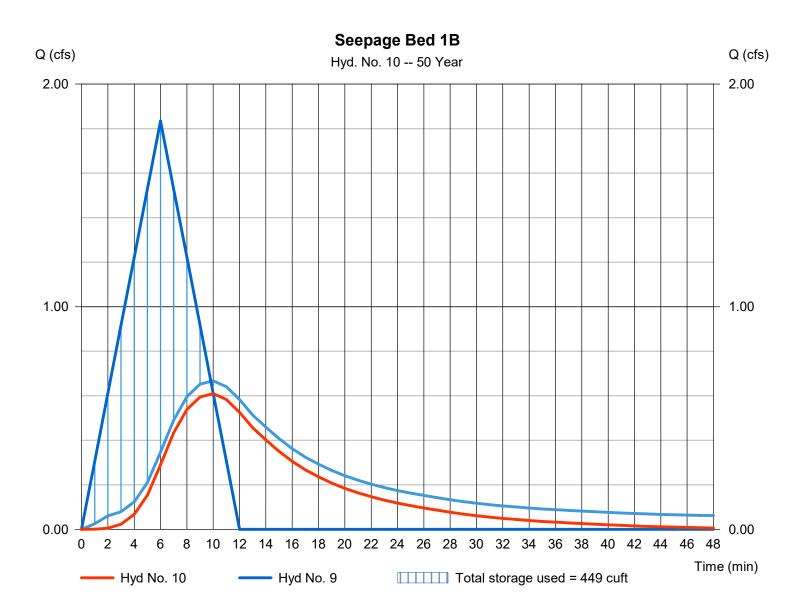


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 1.834 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 660 cuft
Inflow hyds.	= 7,8	Contrib. drain. area	= 0.270 ac

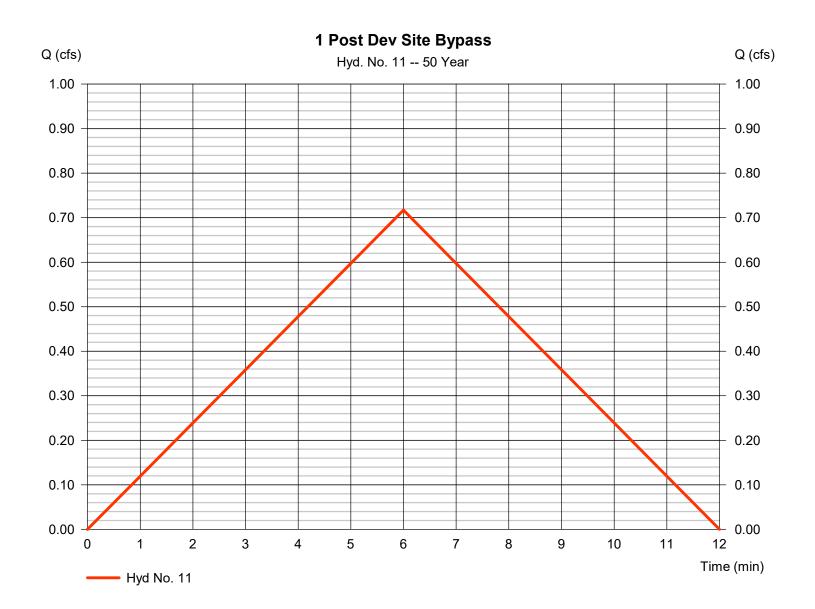

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 50 yrs 1 min 9 - 1B Post Dev Controlled To 		= 0.610 cfs = 10 min = 466 cuft = 127.47 ft
Reservoir name	= Seepage Bed 1B	Max. Storage	= 449 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

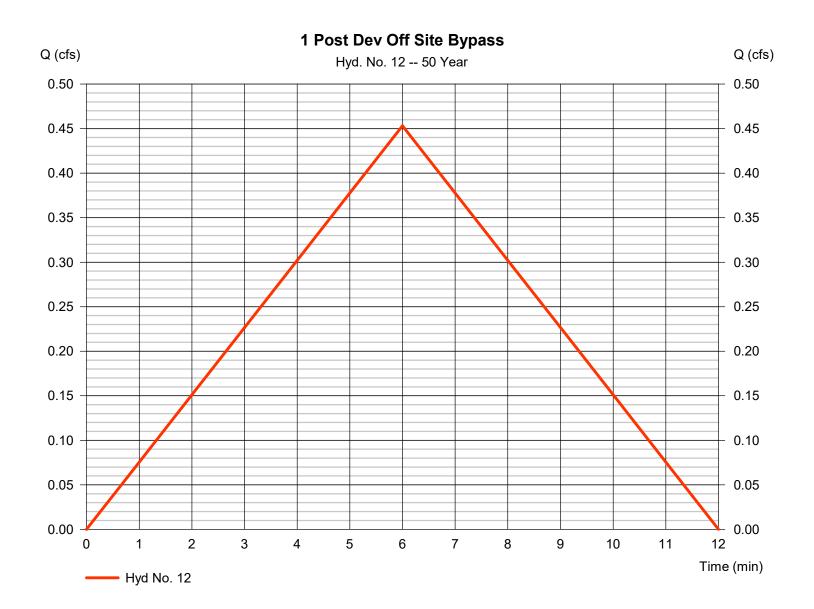


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.717 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 258 cuft
Drainage area	= 0.160 ac	Runoff coeff.	= 0.62
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

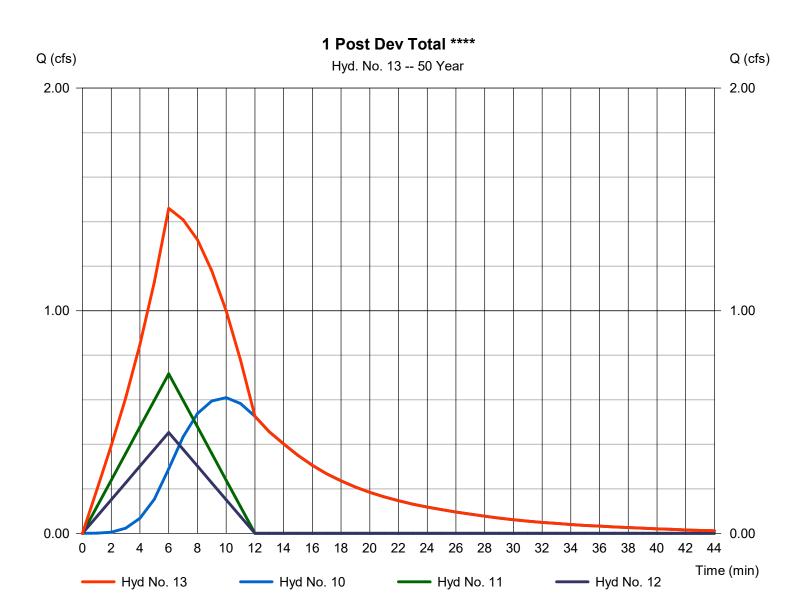


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.453 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 163 cuft
Drainage area	= 0.110 ac	Runoff coeff.	= 0.57
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

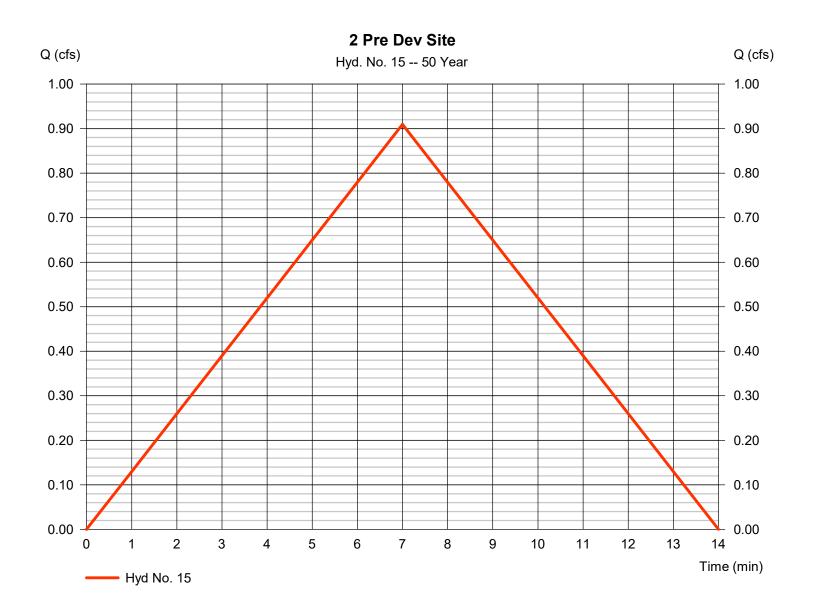


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 1.460 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 887 cuft
Inflow hyds.	= 10. 11. 12	Contrib. drain. area	= 0.270 ac
nniow nyds.	- 10, 11, 12		- 0.270 40


Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.910 cfs
Storm frequency	= 50 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 382 cuft
Drainage area	= 0.410 ac	Runoff coeff.	= 0.32
Intensity	= 6.933 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

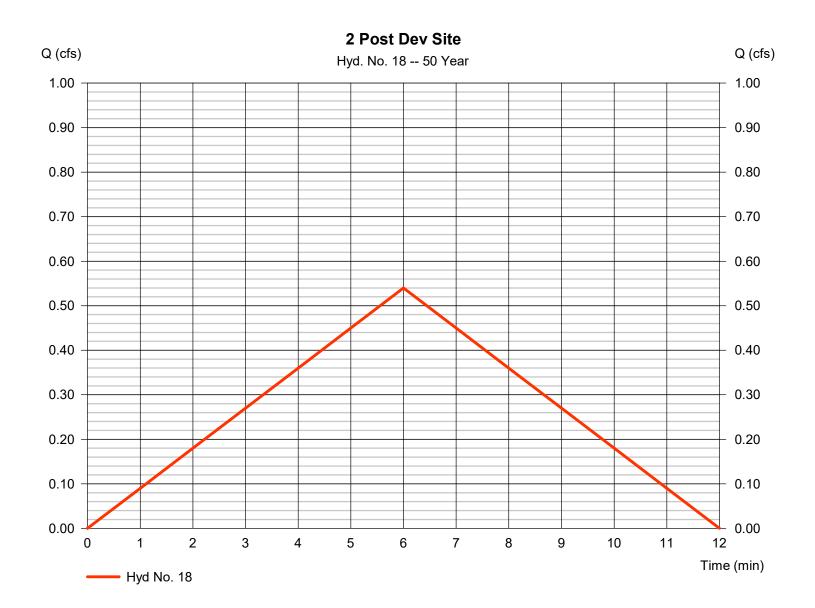
Hydrograph type	= Mod. Rational	Peak discharge	= 4.742 cfs
Storm frequency	= 50 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 1,992 cuft
Drainage area	= 1.520 ac	Runoff coeff.	= 0.45
Intensity	= 6.933 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

Hydrograph type Storm frequency	= Combine = 50 yrs	Peak discharge Time to peak	= 5.651 cfs = 7 min
Time interval	= 1 min	Hyd. volume	= 2,374 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac

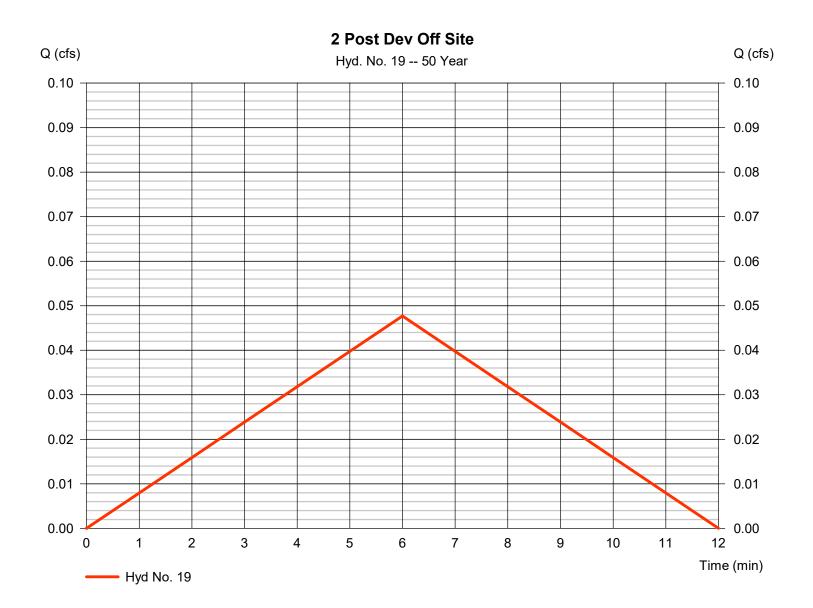


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.540 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 194 cuft
Drainage area	= 0.090 ac	Runoff coeff.	= 0.83
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

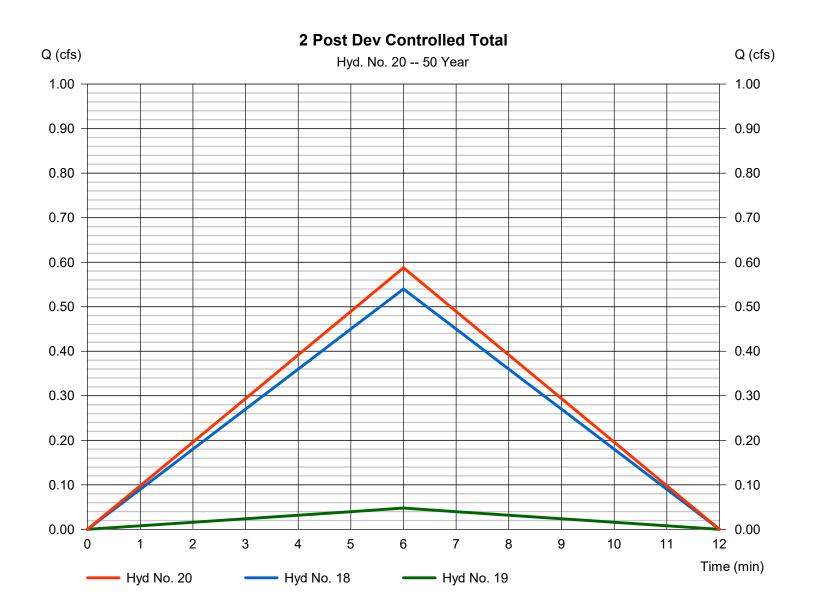


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

2 Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.048 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 17 cuft
Drainage area	= 0.060 ac	Runoff coeff.	= 0.11
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

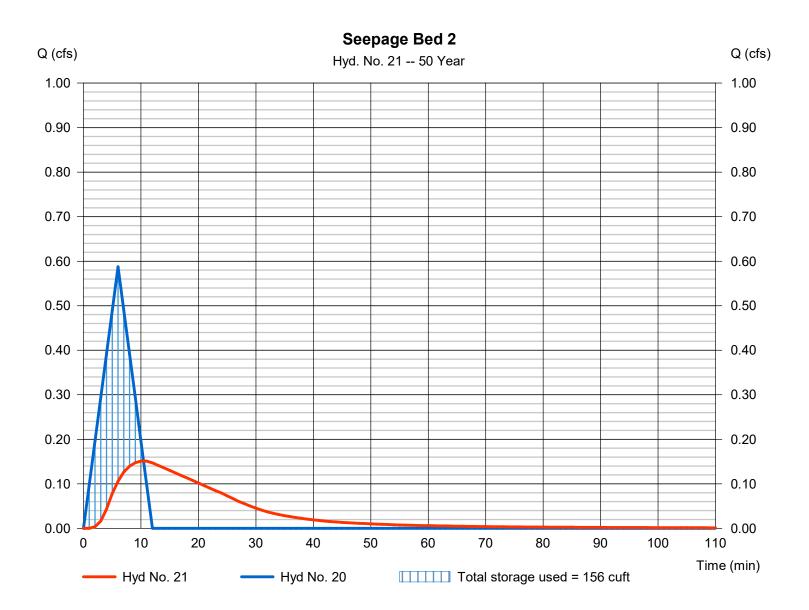


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total

Hydrograph type Storm frequency	= Combine = 50 yrs	Peak discharge Time to peak	= 0.588 cfs = 6 min
Time interval	= 1 min	Hyd. volume	= 212 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 0.150 ac

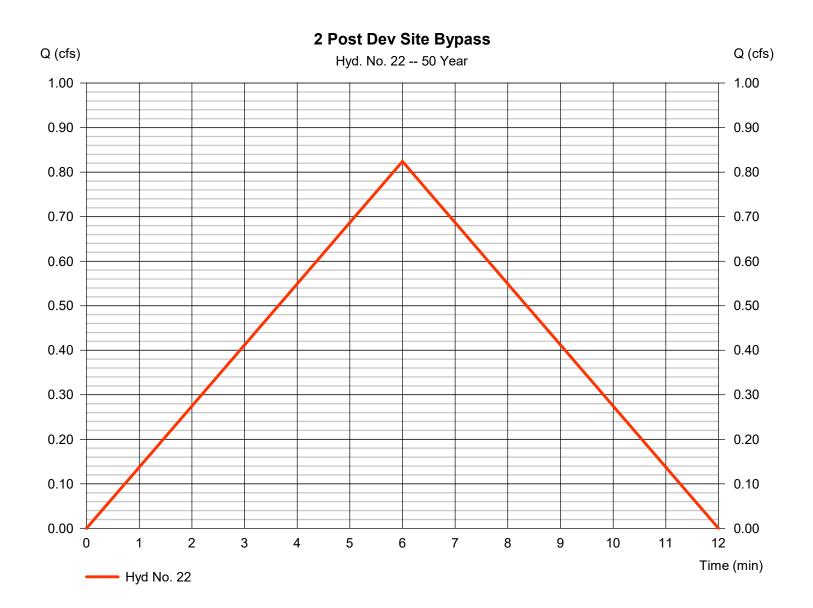

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type	= Reservoir	Peak discharge	= 0.151 cfs
Storm frequency	= 50 yrs	Time to peak	= 10 min
Time interval	= 1 min = 20 - 2 Post Dev Controlle	Hyd. volume	= 206 cuft = 108.53 ft
Inflow hyd. No.	= 20 - 2 Post Dev Controlle	Max. Storage	= 108.53 ft
Reservoir name	= Seepage Bed 2		= 156 cuft

Storage Indication method used.


Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

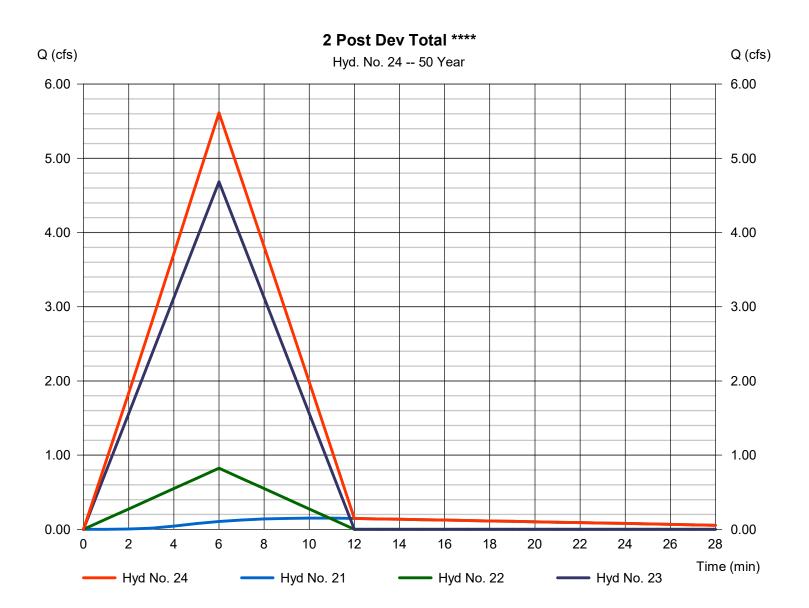
Hydrograph type	= Mod. Rational	Peak discharge	= 0.824 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 297 cuft
Drainage area	= 0.200 ac	Runoff coeff.	= 0.57
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 4.684 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,686 cuft
Drainage area	= 1.350 ac	Runoff coeff.	= 0.48
Intensity	= 7.228 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

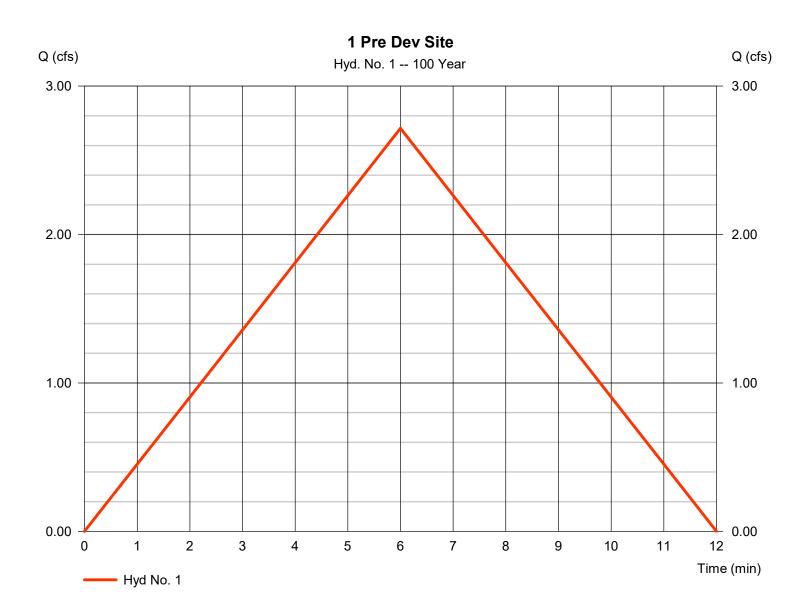
Hyd. No. 24

2 Post Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 5.613 cfs
Storm frequency	= 50 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 2,188 cuft
Inflow hyds.	= 21, 22, 23	Contrib. drain. area	= 1.550 ac
innen nyaét	_ :,, _0		neee ae

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

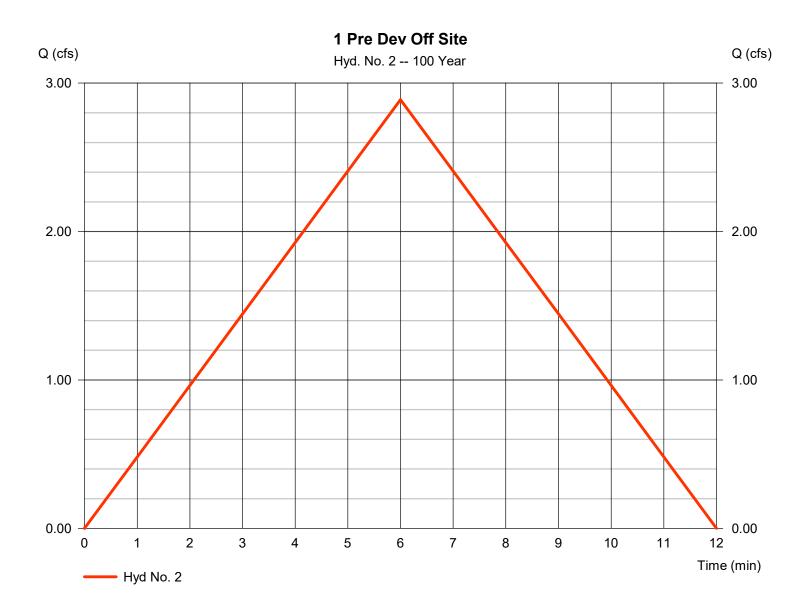

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Mod. Rational	2.715	1	6	978				1 Pre Dev Site
2	Mod. Rational	2.889	1	6	1,040				1 Pre Dev Off Site
3	Combine	5.604	1	6	2,018	1, 2			1 Pre Dev Total ****
4	Mod. Rational	2.474	1	6	891				1A Post Dev Site
5	Mod. Rational	2.658	1	6	957				1A Post Dev Off Site
6	Combine	5.132	1	6	1,848	4, 5			1A Post Dev Controlled Total
7	Reservoir	0.000	1	102	0	6	127.56	1,836	Seepage Bed 1A
8	Mod. Rational	1.955	1	6	704				1B Post Dev Site
9	Combine	1.955	1	6	704	7, 8			1B Post Dev Controlled Total
10	Reservoir	0.666	1	10	507	9	127.49	474	Seepage Bed 1B
11	Mod. Rational	0.764	1	6	275				1 Post Dev Site Bypass
12	Mod. Rational	0.483	1	6	174				1 Post Dev Off Site Bypass
13	Combine	1.572	1	6	956	10, 11, 12			1 Post Dev Total ****
15	Mod. Rational	0.969	1	7	407				2 Pre Dev Site
16	Mod. Rational	5.054	1	7	2,123				2 Pre Dev Off Site
17	Combine	6.024	1	7	2,530	15, 16			2 Pre Dev Total ****
18	Mod. Rational	0.575	1	6	207				2 Post Dev Site
19	Mod. Rational	0.051	1	6	18				2 Post Dev Off Site
20	Combine	0.626	1	6	225	18, 19			2 Post Dev Controlled Total
21	Reservoir	0.158	1	10	220	20	108.57	166	Seepage Bed 2
22	Mod. Rational	0.878	1	6	316				2 Post Dev Site Bypass
23	Mod. Rational	4.992	1	6	1,797				2 Post Dev Off Site Bypass
24	Combine	5.981		6	2,333	21, 22, 23			2 Post Dev Total ****
301	Watersheds	2084 RN	l.gpw		Return	Period: 100	Year	Friday, 09	/ 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

1 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.715 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 978 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.47
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

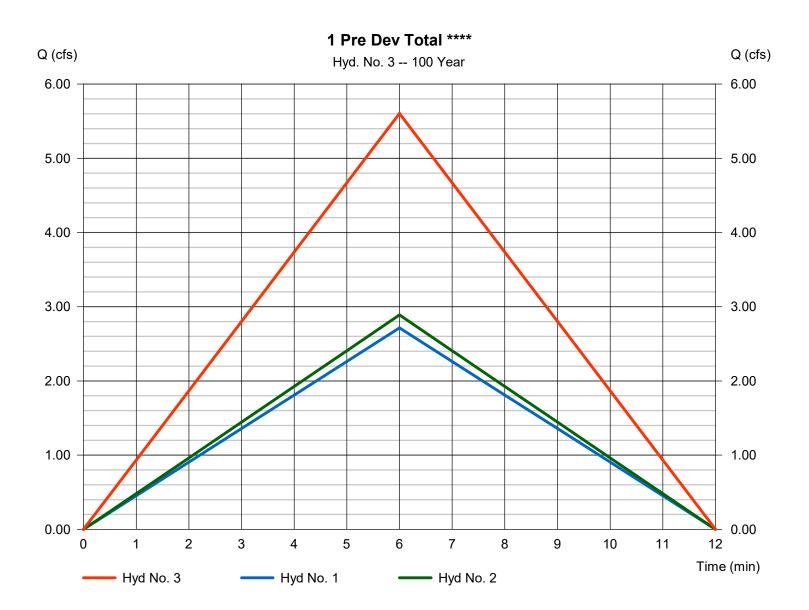


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

1 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.889 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,040 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.5
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

1 Pre Dev Total ****

Hydrograph type	= Combine	Peak discharge	= 5.604 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 2,018 cuft
	= 1.2	Contrib. drain. area	= 1.500 ac
Inflow hyds.	- I, Z	Contrib. drain. area	- 1.500 ac

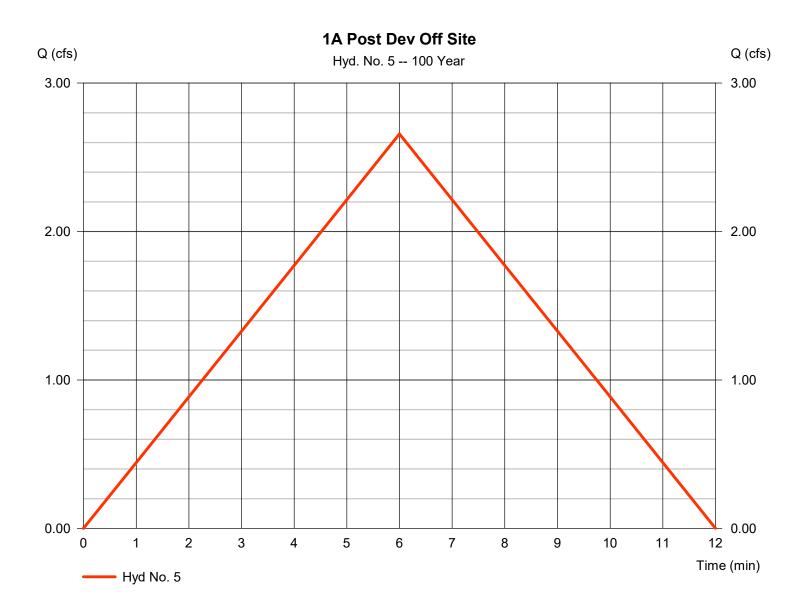

Friday, 09 / 22 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

1A Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.474 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 891 cuft
Drainage area	= 0.440 ac	Runoff coeff.	= 0.73
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

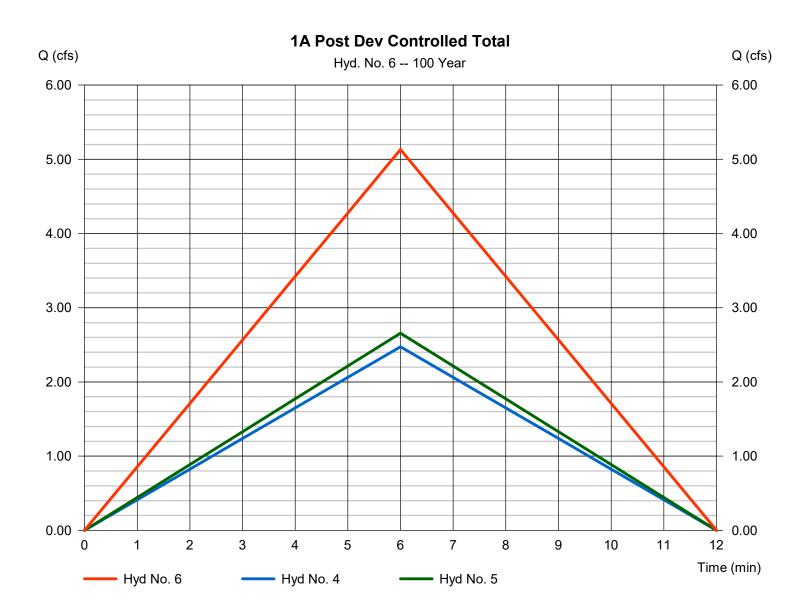


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

1A Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 2.658 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 957 cuft
Drainage area	= 0.750 ac	Runoff coeff.	= 0.46
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

1A Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 5.132 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,848 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 1.190 ac
5) -		

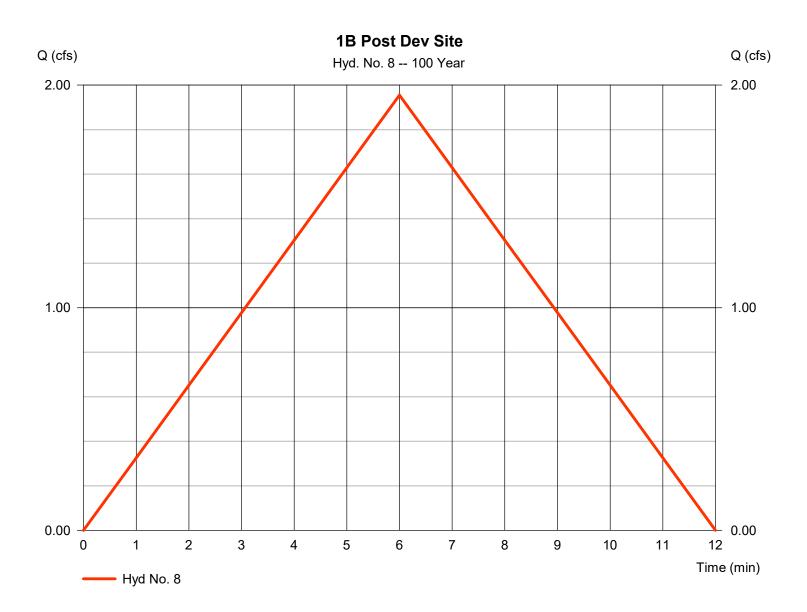
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Seepage Bed 1A

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= 102 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 6 - 1A Post Dev Cont	rolled TotMax. Elevation	= 127.56 ft
Reservoir name	= Seepage Bed 1A	Max. Storage	= 1,836 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

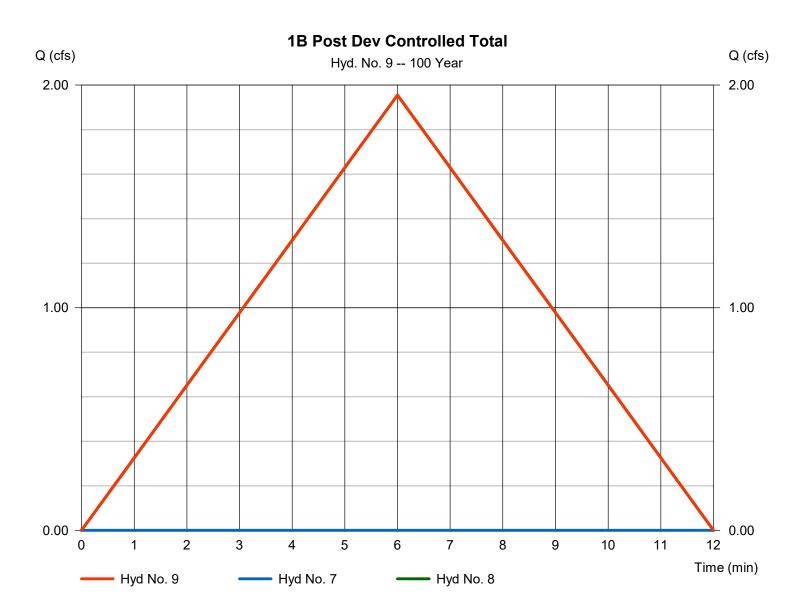


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

1B Post Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 1.955 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 704 cuft
Drainage area	= 0.270 ac	Runoff coeff.	= 0.94
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



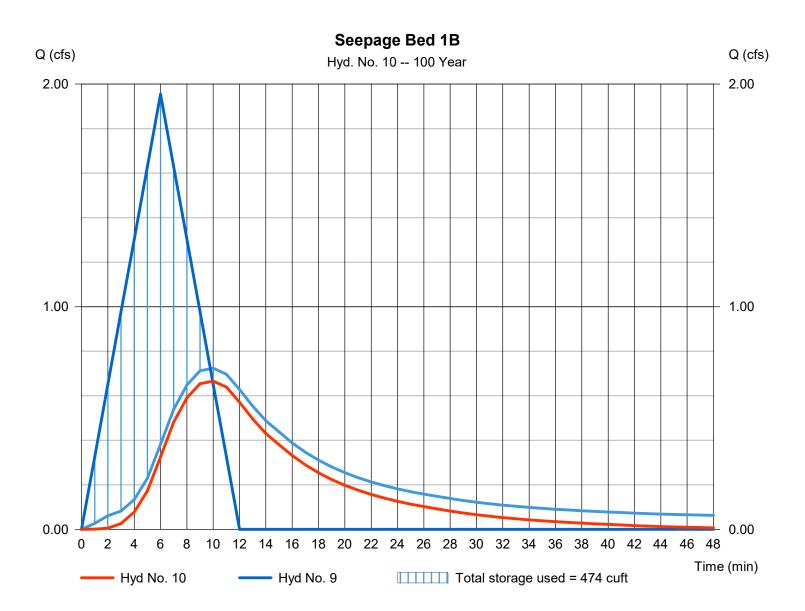
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

1B Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 1.955 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 704 cuft
Inflow hyds.	= 7,8	Contrib. drain. area	= 0.270 ac

Friday, 09 / 22 / 2023

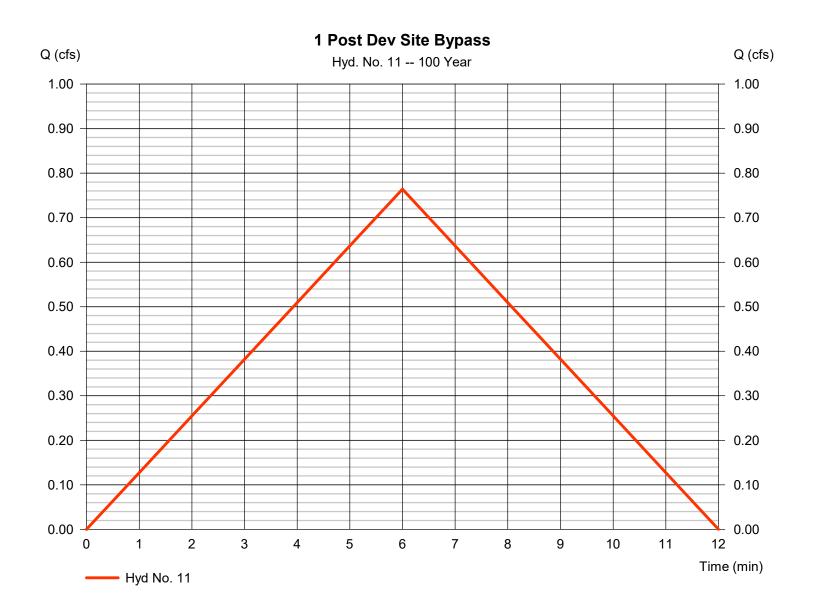

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Seepage Bed 1B

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 100 yrs 1 min 9 - 1B Post Dev Controlled To Scopage Red 1B 		= 0.666 cfs = 10 min = 507 cuft = 127.49 ft = 474 cuft
Reservoir name	= Seepage Bed 1B	Max. Storage	= 474 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

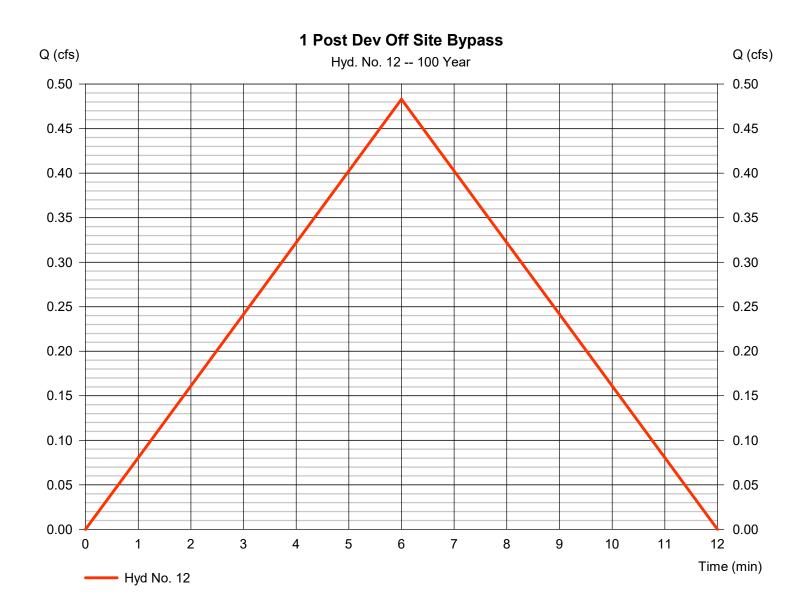


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

1 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.764 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 275 cuft
Drainage area	= 0.160 ac	Runoff coeff.	= 0.62
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

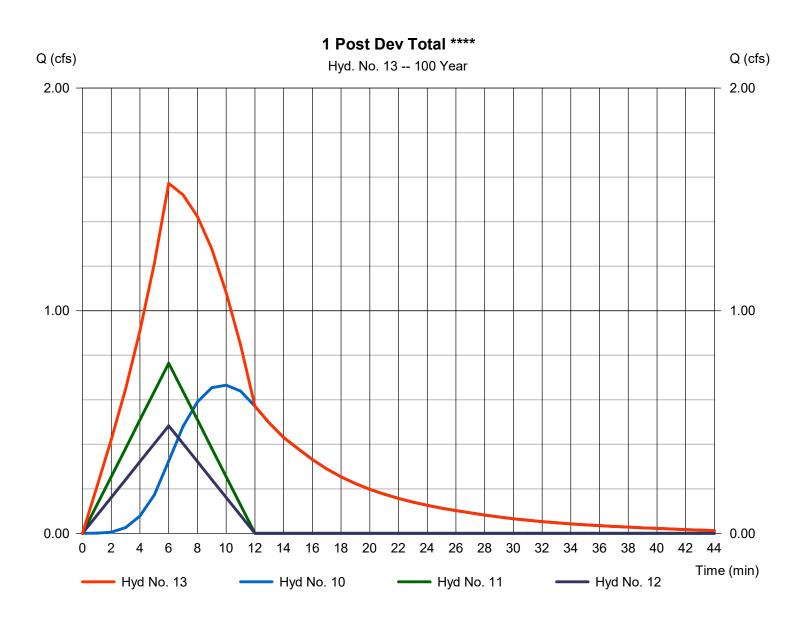


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

1 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.483 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 174 cuft
Drainage area	= 0.110 ac	Runoff coeff.	= 0.57
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

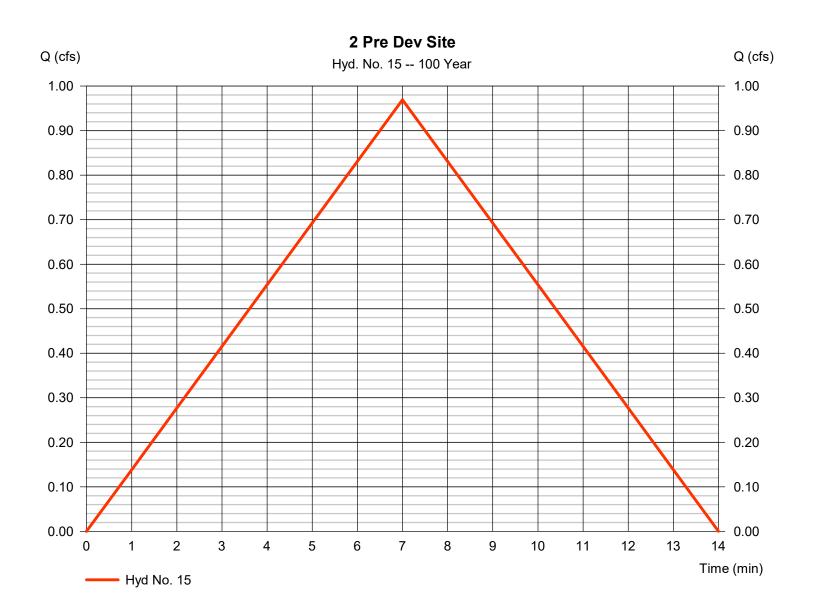


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 13

1 Post Dev Total ****

	= 6 min
J	= 956 cuft = 0.270 ac

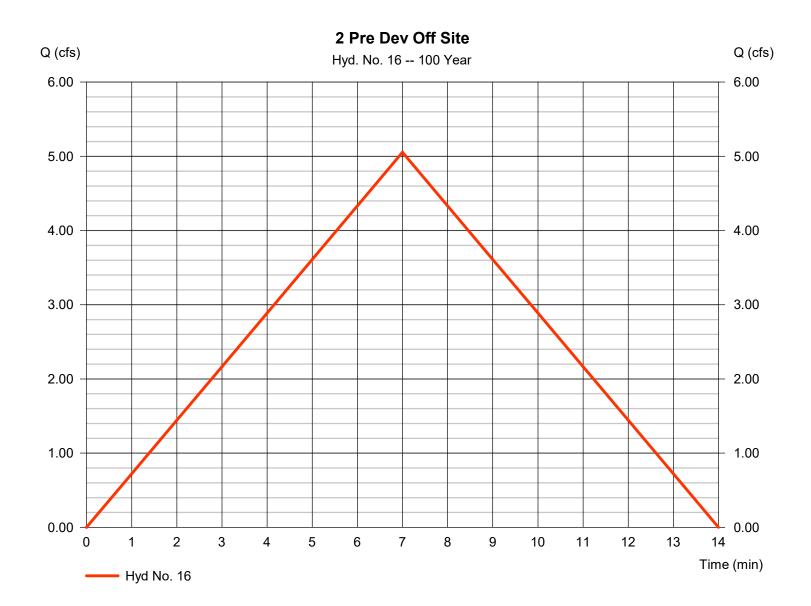


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 15

2 Pre Dev Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.969 cfs
Storm frequency	= 100 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 407 cuft
Drainage area	= 0.410 ac	Runoff coeff.	= 0.32
Intensity	= 7.389 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

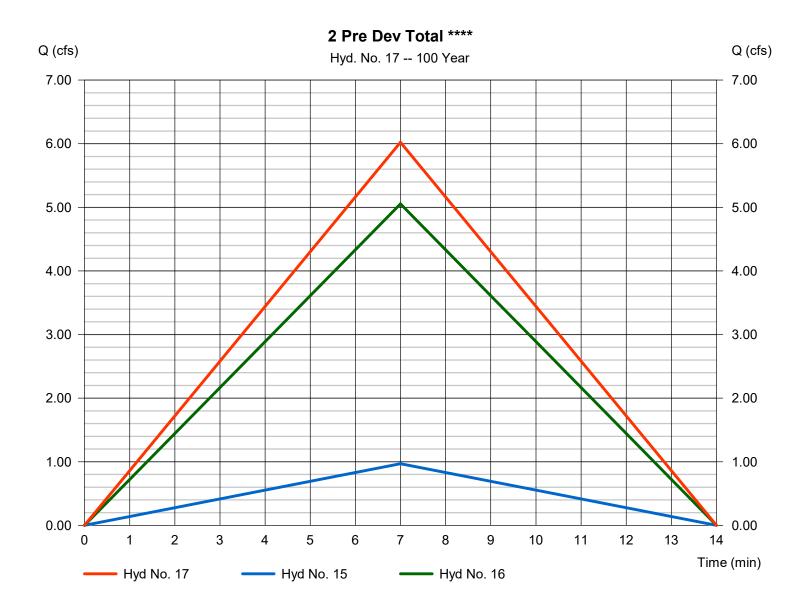


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 16

2 Pre Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 5.054 cfs
Storm frequency	= 100 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 2,123 cuft
Drainage area	= 1.520 ac	Runoff coeff.	= 0.45
Intensity	= 7.389 in/hr	Tc by User	= 7.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

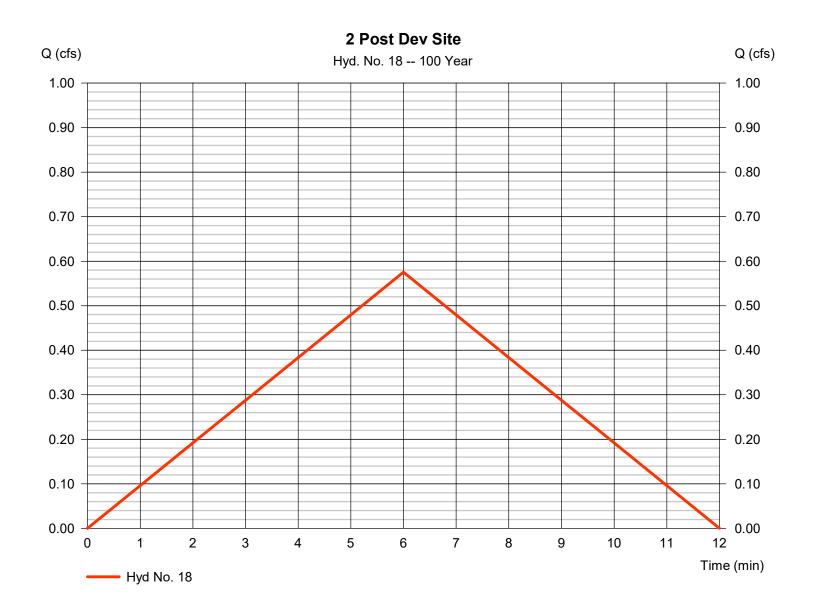


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 17

2 Pre Dev Total ****

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 6.024 cfs = 7 min
Time interval	= 1 min	Hyd. volume	= 2,530 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 1.930 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 18

2 Post Dev Site

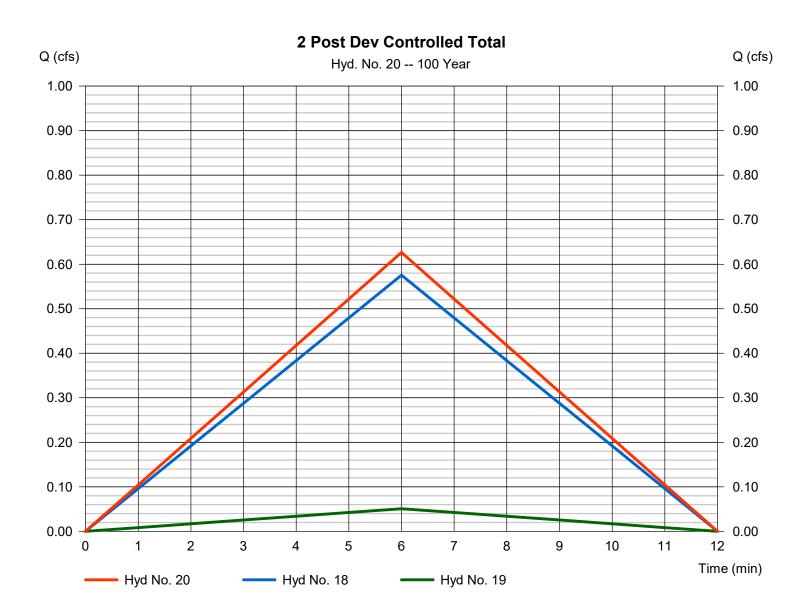
Hydrograph type	= Mod. Rational	Peak discharge	= 0.575 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 207 cuft
Drainage area	= 0.090 ac	Runoff coeff.	= 0.83
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 19

2 Post Dev Off Site

Hydrograph type	= Mod. Rational	Peak discharge	= 0.051 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 18 cuft
Drainage area	= 0.060 ac	Runoff coeff.	= 0.11
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

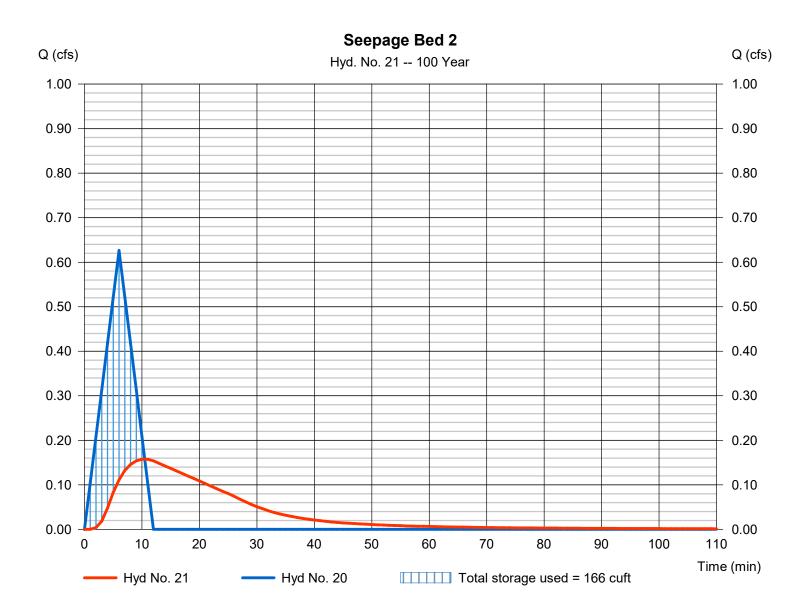


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 20

2 Post Dev Controlled Total

Hydrograph type	= Combine	Peak discharge	= 0.626 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 225 cuft
Inflow byds	= 18 19	Contrib, drain, area	= 0.150 ac
Inflow hyds.	= 18, 19	Contrib. drain. area	= 0.150 ac

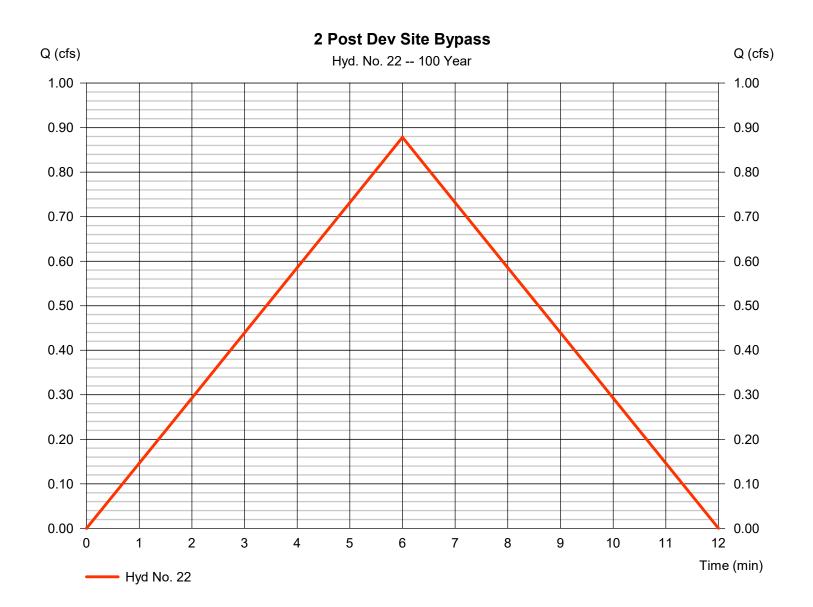

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 21

Seepage Bed 2

Hydrograph type	= Reservoir	Peak discharge	= 0.158 cfs
Storm frequency	= 100 yrs	Time to peak	= 10 min
Time interval	= 1 min		= 220 cuft
	= 20 - 2 Post Dev Controlled T	Hyd. volume	= 108.57 ft
Inflow hyd. No. Reservoir name	 Seepage Bed 2 	Max. Storage	= 166.57 ft $= 166$ cuft

Storage Indication method used.

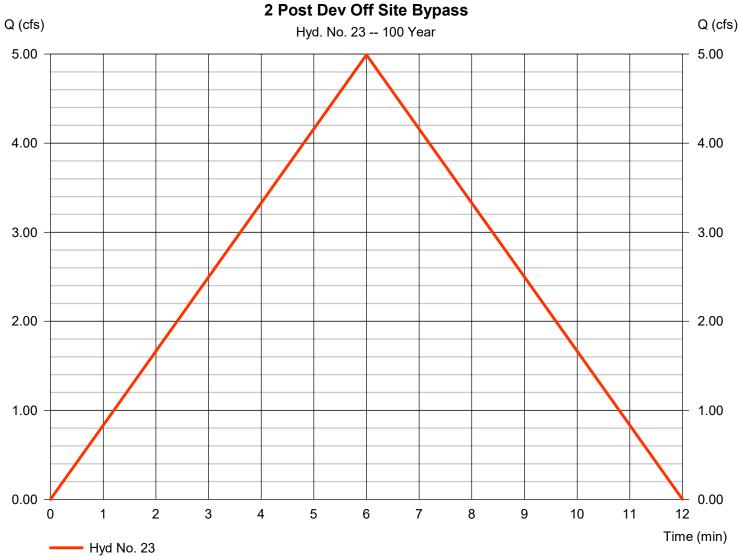


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 22

2 Post Dev Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 0.878 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 316 cuft
Drainage area	= 0.200 ac	Runoff coeff.	= 0.57
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

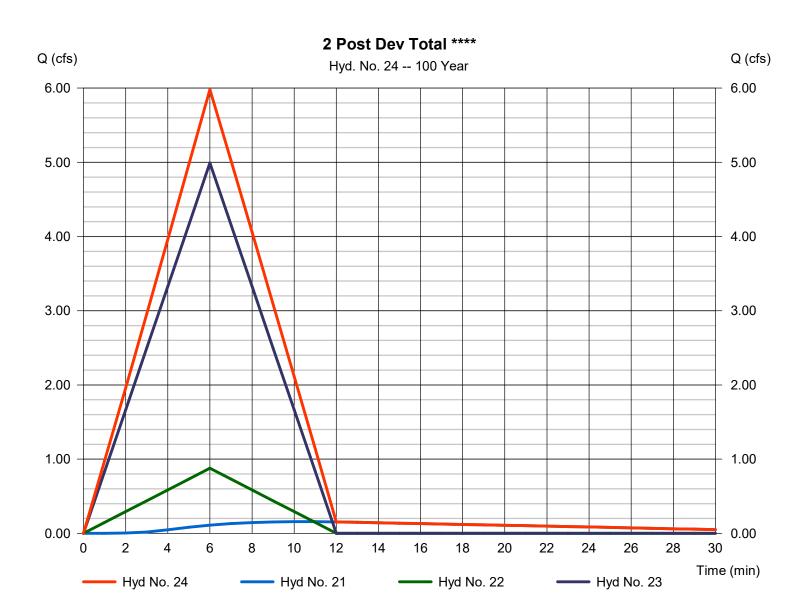


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 23

2 Post Dev Off Site Bypass

Hydrograph type	= Mod. Rational	Peak discharge	= 4.992 cfs
Storm frequency	= 100 yrs	Time to peak	= 6 min
Time interval	= 1 min	Hyd. volume	= 1,797 cuft
Drainage area	= 1.350 ac	Runoff coeff.	= 0.48
Intensity	= 7.704 in/hr	Tc by User	= 6.00 min
IDF Curve	= PA-Doylestown.IDF	Storm duration	= 1.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 24

2 Post Dev Total ****

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 5.981 cfs = 6 min
Time interval	= 1 min	Hyd. volume	= 2,333 cuft
Inflow hyds.	= 21, 22, 23	Contrib. drain. area	= 1.550 ac

270 of 293

Structure

SEEPAGE BED 1A Broad Crested Weir

Crest	129.00	feet
Increment	0.10	feet
Length	4.71	feet
С	3.32	Discharge coefficent
Qc =	C x Length x	Height ^1.5
Known Q	5.13	cfs
Flow Depth	0.48	feet
Elevation	129.48	feet
Finished Grade	129.79	feet
Freeboard	0.31	feet

STAGE/DISCHARGE CALCULATIONS

SEEPAGE BED 1B Broad Crested Weir

Crest	129.00	feet
Increment	0.25	feet
Length	3.14	feet
С	3.32	Discharge coefficent
Qc =	C x Length x	Height ^1.5
Known Q	7.09	cfs
Flow Depth	0.77	feet
Elevation	129.77	feet
Finished Grade	129.92	feet
Freeboard	0.15	feet

STAGE/DISCHARGE CALCULATIONS

Elev	Height	Discharge	Elev	Height	Discharge
(ft)	(ft)	(cfs)	(ft)	(ft)	(cfs)
129.00	0.00	0.00	129.00	0.00	0.00
129.10	0.10	0.49	129.25	0.25	1.30
129.20	0.20	1.40	129.50	0.50	3.69
129.30	0.30	2.57	129.75	0.75	6.77
129.40	0.40	3.96	130.00	1.00	10.43
129.50	0.50	5.53	130.25	1.25	14.58
129.60	0.60	7.27	130.50	1.50	19.16
129.70	0.70	9.16	130.75	1.75	24.15

SEEPAGE BED 2

Broad Crested Weir

Crest	109.00	feet
Increment	0.25	feet
Length	3.14	feet
С	3.32	Discharge coefficent
Qc =	C x Length x	Height ^1.5
Known Q	0.63	cfs
Flow Depth	0.15	feet
Elevation	109.15	feet
Finished	110.48	feet
Grade	110.40	leet
Freeboard	1.33	feet

STAGE/DISCHARGE CALCULATIONS

Elev (ft)	Height (ft)	Discharge (cfs)
109.00	0.00	0.00
110.25	1.25	21.86
110.35	1.35	24.54
110.45	1.45	27.32
110.55	1.55	30.19
110.65	1.65	33.16
110.75	1.75	36.22
110.85	1.85	39.37
110.95	1.95	42.60

Storm Drain Capacity Computations

10 year storm

From	To Point	Drain Area	Runoff Coef.		CA Travel Ti						Times		Inlet Time	Rain Fall	Inc Run- Off Q	C	Contributing Run-Off				
Point				Incre- ment	Trib1	Trib1 CA	Trib2	Trib2 CA		Trib3 CA	Accum- ulated	Tc To Inlet	Trib1 Tc	Trib2 Tc	Trib3 Tc	min- utes	in./hr.	c.f.s.	c.f.s.	Source	Identical
		acres	С		ID	0, 1	ID	0,1	ID	0,1	ulatod					4100					Pipes
0												-		_							
1	2	0.91	0.65	0.59							0.59					5.00	6.29	3.71			1
2	3				1	0.59					0.59		5.00			5.00	6.29				1
3	4			0.00	2	0.59					0.59		5.00			5.00	6.29	0.00			1
4	5	0.06	0.31	0.02	3	0.59					0.61		5.00			5.00	6.29	0.13			1
5	6			2	•		•							•		5.00	6.29		5.13	Basin 1A	1
6	7															5.00	6.29		7.09	Basin 1B	1
7	102	0.05	0.63	0.03	6						0.03		5.00			5.00	6.29	0.19			1
8	9	1.58	0.57	0.90							0.90					5.00	6.29	5.66			1
9	12	0.05	0.64	0.03	8	0.90					0.93		5.00			5.00	6.29	0.19			1
10	12															5.00	6.29		0.63	Basin 2	1
11	12	0.34	0.61	0.21							0.21					5.00	6.29	1.32			1
102	103	0.10	1.04	0.10	7	0.03	101				0.13		5.00			5.00	6.29	0.63			1
104	none			0.00	13						0.00					5.00	6.29	0.00			1
200	Outlet	0.08	1.00	0.08							0.08					5.00	6.29	0.50			1

1000

continues right

Storm	Drain		3/18/2024	4 C				Doylestown						Pennsylvania				
From	То		TOTAL RUN-OFF Q	Invert El	levations	Length	Slope	Dia.	Wall		Capacity	Flow Depth	US WSEL	DS WSEL	Vel.	Flow Time	Travel Time	
Point	Point	Identical Pipes	per Pipe cfs	Upper	Lower	ft.	ft./ft.	in	vvan	n value	c.f.s.	feet	feet	feet	f.p.s.	minutes	minutes	REMARKS
0		-																
1	2	1	3.71	134.13	133.57	112	0.0050	15	D	0.012	4.96	0.81	134.94	134.38	4.43	0.42	5.42	
2	3	1	3.71	133.57	133.38	39	0.0050	15	D	0.012	4.96	0.81	134.38	134.19	4.43	0.14	5.14	
3	4	1	3.71	133.38	133.05	66	0.0050	15	D	0.012	4.96	0.81	134.19	133.86	4.43	0.25	5.25	
4	5	1	3.84	129.05	127.00	65	0.0317	15	D	0.012	12.49	0.48	129.53	127.48	8.95	0.12	5.12	
5	6	1	5.13	126.75	125.89	123	0.0070	18	D	0.012	9.55	0.78	127.53	126.67	5.49	0.37	5.37	100 year emergency flows used
6	7	1	7.09	126.40	125.16	24	0.0524	18	D	0.012	26.12	0.53	126.93	125.69	12.56	0.03	5.03	100 year emergency flows used
7	102	1	0.19	124.07	123.36	116	0.0061	18	D	0.012	8.91	0.15	124.22	123.51	2.01	0.96	5.96	
8	9	1	5.66	112.85	103.34	72	0.1313	18	D	0.012	41.35	0.38	113.23	103.72	16.33	0.07	5.07	
9	12	1	5.85	103.34	102.38	25	0.0393	18	D	0.012	22.62	0.52	103.86	102.90	10.73	0.04	5.04	
10	12	1	0.63	106.50	102.38	19	0.2200	18	D	0.012	53.52	0.11	106.61	102.49	10.19	0.03	5.03	100 year emergency flows used
11	12	1	1.32	107.70	102.38	62	0.0856	18	D	0.012	33.38	0.20	107.90	102.58	9.17	0.11	5.11	
102	103	1	0.82	123.22	123.07	8	0.0179	18	D	0.012	15.27	0.24	123.46	123.31	4.59	0.03	5.03	
104	none	1	0.00	95.08	87.81	78 0.0932 18 D 0.012 34.83					34.83	0.01	95.09	87.82	0.83	1.58	6.58	
200	Outlet	1	0.50	95.08							34.83	0.13	95.21	87.94	7.07	0.18	5.18	Drive A entrance Bristol Road gutter flow

1000 tinues right

end page

	Perforation Computations													
Project Location:	2084 Bril Bensaler	la LLC n Township		100	year storr	n					By: Date:	DLF 08/12/2022		
Structure	Pipe	Discharge	Cd	Perforation Diameter in	Perforat si/ft	tion Area sf/ft	Grate feet	Invert feet	H feet	QL cfs	Length Min feet	Length Provided feet		
Seepage Bed 1A	12	6.09	0.6	0.313	1.5	0.0104	130.29	125.90	2.89	0.0853	71.39	178		
Seepage Bed 1B	12	1.96	0.6	0.313	1.5	0.0104	130.42	125.90	3.02	0.0872	22.43	100		
Seepage Bed 2	12	0.64	0.6	0.313	1.5	0.0104	111.26	106.60	3.16	0.0892	7.20	36		

H = Grate - invert - 1 - dia/2

L (length of level spreader pipe) = Q / Q_L

 Q_L (discharge per linear foot) = $Q_O * \#$ of perforations per linear foot of pipe (provided by manufacturer, based on perforation diameter)

 Q_O (perforation flow rate) = $C_d * A * (2 * g * H)^{0.5}$

 Q_O = the free outfall flow rate through one perforation (ft³/sec)

 C_d = Coefficient of discharge (typically 0.60)

A = Cross sectional area of one perforation (ft^2)

 $g = 32.2 \text{ ft/sec}^2$

H = head, average height of water above perforation (ft) (provided by manufacturer)

Standard Perforation Patterns

AASHTO Class II Perforation

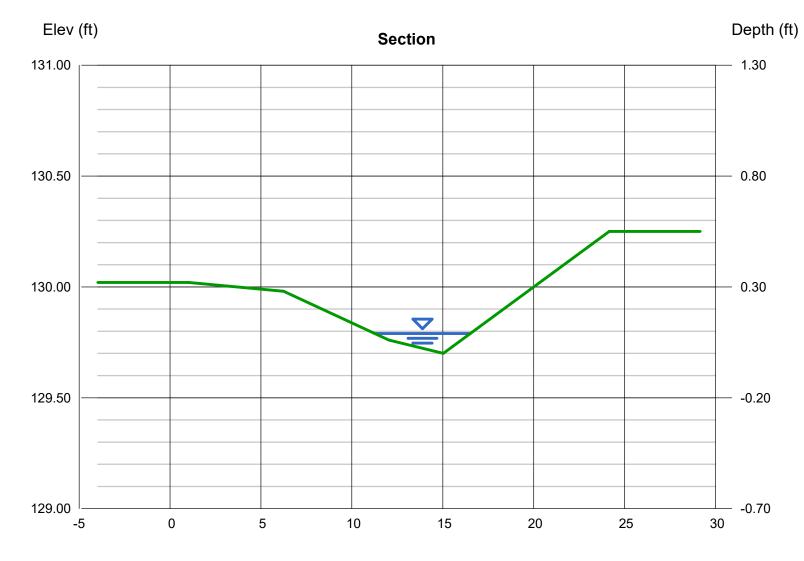
The following terminology for perforations is derived from the applicable AASHTO specification. Differences between the specifications are covered in the table below. Class II perforations shall be located in the outside valleys of the corrugations, be circular and/or slotted and evenly spaced around the circumference and length of the pipe. The perforations shall be located in the outside valleys of the corrugations. The water inlet area shall be no less than 0.945 in²/ft (20 cm²/m) for pipe diameters 4- through 10-inch (100 - 250mm), 1.42 in²/ft (30 cm²/m) for pipe diameters 12- through 18-inch (300 - 450 mm) and 1.89 in²/ft (40 cm²/m) for pipe diameters larger than and equal to 24 inches (600 mm). Table 1 below represents ADS standard perforation patterns for AASHTO Class II.

Nomi	nal I.D.	Perforation Type	Maximu Leng Diam	th or	Maxi Slot V		Minimum Inlet Area			
in	mm	1 1	in	mm	in	mm	in²/ft	cm²/m		
4	100	Slot	0.875	22	0.125	3	1.0	21		
6	150	Slot	0.875	22	0.125	3	1.0	21		
8	200	Slot	1.18	30	0.125	3	1.0	21		
10	250	Slot	1.18	30	0.125	3	1.0	21		
12	300	Circular	0.313	8		-	1.5	32		
15	375	Circular	0.313	8	-	-	1.5	32		
18	450	Circular	0.313	8	-	-	1.5	32		
24	600	Circular	0.313	8	-	-	2.0	42		
30	750	Circular	0.375	9.5		-	2.0	42		
36	900	Circular	0.375	9.5	-	-	2.0	42		
42	1050	Circular	0.375	9.5		-	2.0	42		
48	1200	Circular	0.375	9.5			2.0	42		
54	1350	Circular	0.375	9.5		-	2.0	42		
60	1500	Circular	0.375	9.5			2.0	42		

end page

Storm Structures

						Total				Impervious		Lawn		Meadow		Woods	C
Structure	Alignment	Туре	Rim	Sump	Depth	Area	C User	СхА	C Calc	Area	C Impervious	Area	C Lawn	Area	C Meadow	Area	Woods
1	STORM 1 TO 5	TYPE M	137.33	134.13	3.20	0.91		0.46	0.51	0.29	0.96	0.62	0.30		0.22		0.11
2	STORM 1 TO 5	TYPE MH	140.07	133.57	6.50												
3	STORM 1 TO 5	TYPE MH	138.34	133.13	5.21												
4	STORM 1 TO 5	TYPE M	136.64	129.05	7.59	0.06		0.02	0.30		0.96	0.06	0.30		0.22		0.11
5	DRIVE B	TYPE C	129.79	123.65	6.14	0.20		0.16	0.77	0.12	0.96	0.08	0.50		0.40		0.2
6	DRIVE B	TYPE C	129.92	123.90	6.02	0.27		0.25	0.95	0.26	0.96	0.01	0.30		0.22		0.11
7	BRISTOL ROAD	TYPE S	128.66	124.07	4.60	0.05		0.03	0.58	0.02	0.96	0.03	0.30		0.22		0.11
8	BRISTOL ROAD	TYPE S	119.13	112.85	6.28	1.58		0.90	0.57	0.25	0.96	1.33	0.50		0.40		0.2
9	BRISTOL ROAD	TYPE S	110.49	103.34	7.15	0.05		0.03	0.68	0.03	0.96	0.02	0.30		0.22		0.11
10	DRIVE C	TYPE C	110.48	104.50	5.98	0.15		0.09	0.62	0.07	0.96	0.08	0.30		0.22		0.11
11	BRISTOL ROAD	TYPE M	111.25	107.70	3.55	0.34		0.21	0.60	0.08	0.96	0.27	0.50		0.40		0.2
12	BRISTOL ROAD	TYPE MH	107.88	96.66	11.22												
13	BRISTOL ROAD	TYPE S	103.75	96.45	7.30	0.09		0.07	0.79	.055.	0.96	0.03	0.50		0.40		0.2
100	BRISTOL ROAD	EX TYPE M	128.09	125.47	2.62												
101	BRISTOL ROAD	EXIST TYPE M	127.11	125.28	1.83	0.24		0.12	0.49	0.07	0.96	0.17	0.30		0.22		0.11
102	BRISTOL ROAD	EX TYPE M	126.35	123.22	3.13	0.10		0.10	1.06	0.11	0.96	-0.01	0.30		0.22		0.11
103	BRISTOL ROAD	TYPE 3	127.03	116.46	10.57												
104	BRISTOL ROAD	EX TYPE S	98.50	94.83	3.67												


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DRIVE A ENTRANCE

User-defined		Highlighted	
Invert Elev (ft)	= 129.70	Depth (ft)	= 0.09
Slope (%)	= 2.28	Q (cfs)	= 0.500
N-Value	= 0.015	Area (sqft)	= 0.26
		Velocity (ft/s)	= 1.93
Calculations		Wetted Perim (ft)	= 5.28
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.11
Known Q (cfs)	= 0.50	Top Width (ft)	= 5.27
		EGL (ft)	= 0.15

(Sta, El, n)-(Sta, El, n)... (1.03, 130.02)-(6.25, 129.98, 0.015)-(12.04, 129.76, 0.015)-(15.03, 129.70, 0.015)-(24.16, 130.25, 0.015)

tation-	Elev Da	ta	× ×	ς	ок
Point	Sta	Elev	Mannings	^	Cancel
1	1.03	130.02		_	
2	6.25	129.98	0.015		
3	12.04	129.76	0.015		
4	15.03	129.70	0.015		
5	24.16	130.25	0.015		
6					
7					
8					
9					
10					
11					
12				¥	

Max

2

2.75

3.02

3.02

С

0.050

5.00

3.11

NA

1.51

2 3

1

8 0.3 4.0

6.1

0.971

0.239

0.074 V

STANDARD E&S WORKSHEET # 11 Channel Design Data

					sign Da	lla								
	Project Name 2084 Brilla LLC						Prepare	d By:	DLF		Date:	9/22/	2023	
	Location: Bensalem Township						Checke	d Bv:	VWF		Date:	9/22/	2023	•
							-	,						-
see	Channel Or Channel Section			Chann	el 1			Char	nel 2			Chan	inel 3	-
note	Slope Condiiton		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Γ
	Temporary Or Permanent Lining?	(T or P)	Т		ŀ	5	-	Γ	F	D	-	Г	F	Þ
	Design Storm (2, 5, or 10 yr)	(yr)	2	2	2	2	2	2	2	2	2	2	2	Γ
	Acres	(ac)												Γ
1	Multiplier (1.6, 2.25, or 2.75)		1.6	1.6	2.75	2.75	1.6	1.6	2.75	2.75	1.6	1.6	2.75	Γ
	Qr (Required Capacity PADEP method)	(cfs)												Γ
	C value													Γ
	Тс	min												Γ
	Rainfall intensity	in/hour												Γ
	Qr (Required Capacity Rational method)	(cfs)												Γ
	Additional Flow	(cfs)	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	3.02	3.02	3.02	Γ
	Qr (Required Capacity to use)	(cfs)	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	3.02	3.02	3.02	Γ
2	Protective Lining		S150	S150	С	С	S150	S150	С	С	SC150	SC150	С	Γ
2	n (Manning'S Coefficient)		0.055	0.055	0.100	0.070	0.055	0.055	0.070	0.060	0.050	0.050	0.070	Γ
	Va (Allowable Velocity)	(fps)	NA	NA	5.00	5.00	NA	NA	5.00	5.00	NA	NA	5.00	Γ
	V (Calculated At Flow Depth d)	(fps)			1.51	1.64			1.64	1.96	1.95	3.11	1.53	Γ
	Ta (Max Allowable Shear Stress)	(lb/ft2)	1.75	1.75	NA	NA	1.75	1.75	NA	NA	2.00	2.00	NA	Γ
	Td (Calc'D Shear Stress At Flow Depth d)	(lb/ft2)	1.00	0.69			1.00	0.80			1.00	1.51	0.68	Γ
	Channel Bottom Width	(ft)	2	2	2	2	2	2	2	2	2	2	2	
	Channel Side Slopes	(h:v)	3	3	3	3	3	3	3	3	3	3	3	Γ
	D (Total Depth)	(ft)	1	1	1	1	1	1	1	1	1	1	1	Γ
	Channel Top Width @ D	(ft)	8	8	8	8	8	8	8	8	8	8	8	
	d (Calculated Flow Depth)	(ft)	0.5	0.4	0.5	0.5	0.4	0.4	0.5	0.4	0.5	0.3	0.5	
	Channel Top Width @ Flow Depth d	(ft)	4.83	4.7	5.2	5.0	4.7	4.6	5.0	4.7	4.8	4.0	5.3	
	Bottom Width: Flow Depth Ratio (12:1 MA	X) (12:1 MAX)	4.2	4.5	3.8	4.0	4.5	4.7	4.0	4.5	4.4	6.1	3.7	
	D50 Stone Size	(in)												
	A (Cross-Sectional Area)	(sq. ft.)	1.608	1.484	1.913	1.765	1.484	1.392	1.765	1.479	1.550	0.971	1.976	
	R (Hydraulic Radius)		0.323	0.308	0.357	0.341	0.308	0.297	0.341	0.308	0.316	0.239	0.363	L
3	S (Bed Slope)	(ft/ft)	0.020	0.025	0.020	0.025	0.025	0.030	0.025	0.030	0.020	0.074	0.020	
5	Design Method For Protective Lining		S	s	V	V	s	s	v	V	s	s	v	
5	Permissible Velocity (V) Or Shear Stress (S)		_	•	•			,	v	_		v	L
			Note:	Dischar	nes from	storm se	ewer calo	rulations	100 vea	r desian	storm			

Note: Discharges from storm sewer calculations 100 year design storm

end page

epared By: [Bensalem To				
repared By: D		s s s una a la lun			
		ownship		DATE:	00/00/0000
лескеа Ву: <u>\</u>		_		_	09/22/2023
	/WF			DATE:	09/22/2023
		<i>[</i>		N STAKES PLAC	ED 10' O.C.
	FILTER ME		UNDISTURBED		
DISTURBED	AREA	V VIII	องในสงในสงใน		
		12" MIN	acendericensideric vinde		
Demien	Q ₂ als		Demonst	Olana Lanath	A 11
Barrier	Sock		Percent	Slope Length	Allowable
Number	Size	LOCATION	Slope	Above Barrier	Length
1	12	perimeter	8.5	57	181
2	12	perimeter	7.0	103	196
3	12	perimeter	9.6	110	166
4	18	perimeter	10.2	213	244
5	18	perimeter	9.9	217	263
6	12	perimeter	10.9	123	151
7	18	perimeter	14.3	158	222

1590 Canary Road, Quakertown, PA 18951 | 215-536-7006 | Fax: 215-538-6136

May 4, 2022 (revised 9/16/23)

Anton Poteryahin 52 E. Georgianna Dr. Richboro, PA 18954

Via email to: <u>a.poteryahin94@gmail.com</u>

Re: Stormwater Infiltration Testing 4304 Bristol Road Feasterville-Trevose, PA 19053 T.M.P. No.: 02-017-068-001 & 02-017-090-001 Bensalem Township, Bucks County, PA

Dear Mr. Poteryahin:

VW Consultants, LLC (VW) completed an evaluation of the above referenced property on April 26, 2022 and September 15, 2023 for the feasibility of stormwater infiltration. Testing was conducted at the six locations marked on the attached Test Pit Location Plan, which is based on the <u>Existing Features Plan for 4304 & 411 Bristol Road</u>, prepared by Fioravanti, Inc., dated 7/26/2021. The results of the testing, including soil test pit descriptions and infiltration rates at specified depths, expressed in inches below ground surface (B.G.S.), are summarized at the end of this report. The infiltration rates were established by the double-ring methodology, as described in the current *PADEP Stormwater Best Management Practices Manual (2006)*. Single-ring infiltrometers were utilized at Test Pit SW-1 and SW-6 due to the rock fragment content at the testing depth. Our findings indicate that infiltration of stormwater runoff is feasible at select locations and depths as listed in the summary table at the end of this report.

Project Setting

The project site is an existing commercial property that consists of two tax parcels on approximately 1.2 acres. The project site is mostly open and partially covered in asphalt in the middle. The project site moderately to steeply slopes downhill towards Bristol Road and Grove Avenue. VW performed the site testing throughout the property in support of proposed stormwater management facilities for new building construction.

Based on a review of a United States Geologic survey map of Pennsylvania, the project site is underlain by the Chickies Formation. This formation consists of light-gray, hard, massive, Scolithusbearing quartzite and quartz schist; thin, inter-bedded dark slate at top; conglomerate (Hellam Member) at base.

Based on a review of the Web Soil Survey, the site soils have been mapped by the Natural Resource Conservation Service as containing the Urban Land - Chester Complex soil series. While the soil profile characteristics and permeability rates of the Urban Land soil series have not been quantified, the soils are variable and generally consist of deep profiles similar to the nearby undisturbed soils. Chester silt loams are classified as very deep, well-drained soils formed in materials weathered from micaceous schist. Chester soils are classified as Hydrologic Soil Group B, while Urban Land soils are generally classified as Hydrologic Soil Group D.

Site Soils

The site was evaluated by a professional soil scientist and the soil profiles were described in accordance to the criteria of the USDA-SCS *Soil Survey Manual* Handbook No. 18 (3/2017) and the USDA-NRCS *Field Book for Describing and Sampling Soils* Version 3.0 (9/2012). A copy of the prepared soil profile descriptions is included with this report.

Six test pits were performed on the project site in support of proposed stormwater management facilities, as shown on the attached Test Pit Location Plan. In the test pits, VW generally observed asphalt, stone or fill soils at the surface that were placed over residual quartzite or schist soils. The clean fill soils generally consisted of dark yellowish brown to multicolored channery loams that are most likely from grading the site in the past. No deleterious material was observed within the fill soils. The residual soils consisted of very pale brown, pale yellow or variegated silt loams, loams, fine sandy loams and sandy loams with varying amounts of rock fragments throughout. Hard bedrock, indicated by machine refusal, was only encountered at Test Pit SW-2 at 48 inches below the existing ground surface.

Redoximorphic features, an indication of seasonal wetness, were not observed in any of the test pits during the field investigation. A regional groundwater table was not observed in any of the test pits during the field investigation. However, water was observed at Test Pit SW-4 at 72 inches below the existing ground surface due to its location down slope of a stormwater drainage swale that drains a large portion of upslope properties. This is not a regional groundwater table, but an artificial water table due to its location and getting stormwater runoff after rain events. Water was not observed in any of the other test pits, even at deeper depths. Please see the soil profile descriptions for a more detailed description of the soils observed at each location.

At completion, the test pits were backfilled and compacted with the excavated material, and leveled off with the surrounding grades. No additional compaction effort or site restoration was performed.

Infiltration Testing

To establish infiltration rates, two single-ring infiltrometer tests were conducted at Test Pit SW-1 and SW-6, and one double-ring infiltrometer test was conducted at Test Pits SW-3 and SW-5. Only one double-ring test could be completed in SW-3 and SW-5 due to test pit size constraints. No infiltration testing was performed at Test Pits SW-2 and SW-4 due to observed rock or water. All tests were conducted at the depth noted on the table below, depth expressed in inches below ground surface (B.G.S.). The test rates were averaged, where applicable, to obtain an average infiltration rate at that depth. The infiltration tests were conducted following the procedure of the current *PADEP Stormwater Best Management Practices Manual (2006)* for both test technique and calculation of the infiltration rate. Please be advised that this calculation, which is consistent with the methodology of the current PADEP Stormwater Manual, is not a soil hydraulic conductivity rate as determined by Darcy's Law.

The table below is a summary of the infiltration test depths and the infiltration rates obtained by VW during the field testing.

Pit No.	Pit Depth (in, BGS)	Observed Redox Features (in, BGS)	Depth to Rock (in, BGS)	Depth to Water (in, BGS)	Infiltration Test Depth (in, BGS)	Infiltration Rate (in/hr.)
SW-1	84	NE	NE	NE	60	13.5
SW-2	48	NE	48	NE	N/A	N/A
SW-3	84	NE	NE	NE	60	0.5

Pit No.	Pit Depth (in, BGS)	Observed Redox Features (in, BGS)	Depth to Rock (in, BGS)	Depth to Water (in, BGS)	Infiltration Test Depth (in, BGS)	Infiltration Rate (in/hr.)
SW-4	72	NE	NE	72*	N/A	N/A
SW-5	84	NE	NE	NE	54	0.5
SW-6	96	NE	NE	NE	60	3.25

NE= not encountered

*The water observed at Test Pit SW-4 at 72 inches below grade can be attributed to the test pit's location directly down slope of an existing stormwater drainage swale that drains a large portion of upslope properties. This is not a regional groundwater table, as water was not observed in any other test pit, even at deeper depths.

Conclusions and Recommendations

VW observed the site soils at six test pit locations and performed infiltration testing at four test pit locations on the subject property. Based on the observed soil conditions and infiltration rates obtained during the site testing, it is recommended that stormwater management facilities be designed at the locations and depths tested where suitable soils and infiltration rates were obtained. The infiltration facilities should be designed by a professional engineer at the depth of the infiltration testing using appropriate engineering practices and with a safety factor reduction from the measured infiltration rate. Care should be taken to preserve the soil infiltrative surface during pre- and post-construction of the stormwater management facility.

Our findings are the result of testing conducted in specific locations and conditions. Should conditions contrary to the findings in this report be discovered prior to, during, or after construction of the stormwater control devices, VW must be notified so our recommendations can be reviewed or revised, if necessary. Additionally, if the stormwater management facility location and/or size changes, a VW soil scientist and the project engineer should review the site testing to confirm additional soil testing is not warranted.

Should you have any questions regarding the information included in this report, please contact me at 215-778-5284, or by email at <u>mhostrander@vw-consultants.com</u>.

Respectfully submitted,

Matthe Postande

VW Consultants, LLC Matthew C. Hostrander, CPSS Professional Soil Scientist

Enclosures: soil profile descriptions, infiltration data sheets and test pit location plan

cc: Vince Fioravanti, P.E. of Fioravanti, Inc.

Professional Soil Scientist

Date: 4/26/22 Pit # SW-1 Project: Poteryahin Location: 4304 Bristol Road Bensalem Township, Bucks Co., PA Soil Series Mapped: Urban-Chester Soil Series Classified: Urban Land

Limiting Zo	one 84+"	none	None Slope: 1-3%			Conduct Single Ring Infiltrometer Test at 60"		
Horizon	Depth (In.)	Matrix Color	Texture	Structure	Consistence	Fe Redox Depletions	Fe Redox Concentrations	Boundary
	0-9		Asphalt & Stone					
BC	9-36	10YR 4/6	cb fsl	1 m sbk	friable	none	none	clear wavy
С	36-84+	2.5Y 7/4	vcb sl	0 m	very friable	none	none	

Township Representative: None Soil Scientist: Matthew C. Hostrander

Notes: Site evaluation for stormwater infiltration. No groundwater encountered. No bedrock encountered. Asphalt and stone observed from 0 to 9 inches below grade.

Weather / Field Conditions: Overcast, 60s, soil moist.

EPIPEDON	COARSE FRAGMENTS (% of Vol	.)	STRUCTURE	REDOX FEATURES
	15-35% 35-65%	>65%	Grade	Abundance
	(gr) gravelly (vgr) very gravelly	(egr)extr. gravelly	Structureless - 0	<i>f</i> - <i>Few</i> <2%
	(ch) channery (vch) very channery	(ech) extr.channery	Weak - 1	c - Common 2-20%
SUBSURFACE HORIZON(S)	(cb) cobbly (vcb) very cobbly	(ecb) extr. cobbly	Moderate - 2	<i>m - Many</i> >20%
	(fl) flaggy (vfl) very flaggy	(efl) extr. flaggy	Strong - 3	Contrast
	(st) stony (vst) very stony	(est) extr. stony	Туре	f - Faint
	(bd) bouldery (vbd) very bouldery	(ebd) extr. bouldery	pl - platy	d - Distinct
SOIL ORDER			pr - prismatic	p - Prominent
Entisol	TEXTURE		cpr - columnar	
	cos - coarse sand		gr - granular	BOUNDARY
	s - sand		abk - angular blocky	Distinctness
DRAINAGE CLASS	fs - fine sand		sbk - subangular blocky	Abrupt <1" (thick)
	vfs - very fine sand		m - massive	<i>Clear</i> 1-2.5"
	lcos - loamy coarse sand		s - single grain	Gradual 2.5 -5"
	ls - loamy sand		Size	Diffuse >5
LANDFORM	lfs - loamy fine sand		vf - very fine	Topography
Upland	lvfs - loamy very fine sand		f - fine	Smooth - boundary is
	cosl - coarse sandy loam		m - medium	nearly level
DOGUTION	sl - sandy loam		co - coarse	Wavy - pockets with
POSITION	fsl - fine sandy loam		vc - very coarse	width greater than depth
Summit	vfsl - very fine sandy loam		vt - very thin	Irregular - pockets with
	l - loam		t - thin	depth greater than width
	sil - silt loam		th - thick	Broken discontinuous
PARENT	si - silt		vth - very thick	
MATERIAL	scl - sandy clay loam			
Fill Davidence	cl - clay loam			
Residuum	sicl - silty clay loam			
BEDROCK LITHOLOGY	sc - sandy clay			
	sic - silty clay			
Quartzite	c – clay			

Professional Soil Scientist

Date: 4/26/22 Pit # SW-2 Project: Poteryahin Location: 4304 Bristol Road Bensalem Township, Bucks Co., PA Soil Series Mapped: Urban-Chester Soil Series Classified: Urban Land

Limiting Zo	one 48"]	Bedrock		Slope: 1-3% Conduct Double Ring Infiltrometer Test a			r Test at N/A	
Horizon	Depth (In.)	Matrix Color	Texture	Structure	Consistence	Fe Redox Depletions	Fe Redox Concentrations	Boundary
	0-6		Asphalt & Stone					
^B	6-16	10YR 4/4	vch l	1 th pl	friable	none	none	abrupt wavy
C	16-48	10YR 7/4	ecb l	0 m	very friable	none	none	
R	48+	Bedrock						

Township Representative: None Soil Scientist: Matthew C. Hostrander

Notes: Site evaluation for stormwater infiltration. No groundwater encountered. Bedrock encountered at 48" bgs. Asphalt and stone observed from 0 to 6 inches below grade. Clean reworked site fill soils observed from 6 to 16 inches below grade. **Weather / Field Conditions:** Overcast, 60s, soil moist.

EPIPEDON	COARSE FRAGMENTS (% of Vol.))	STRUCTURE	REDOX FEATURES
	15-35% 35-65%	>65%	Grade	Abundance
	(gr) gravelly (vgr) very gravelly	(egr)extr. gravelly	Structureless - 0	<i>f</i> - <i>Few</i> <2%
	(ch) channery (vch) very channery	(ech) extr.channery	Weak - 1	c - Common 2-20%
SUBSURFACE HORIZON(S)	(cb) cobbly (vcb) very cobbly	(ecb) extr. cobbly	Moderate - 2	<i>m - Many</i> >20%
	(fl) flaggy (vfl) very flaggy	(efl) extr. flaggy	Strong - 3	Contrast
	(st) stony (vst) very stony	(est) extr. stony	Туре	f - Faint
	(bd) bouldery (vbd) very bouldery	(ebd) extr. bouldery	pl - platy	d - Distinct
SOIL ORDER			pr - prismatic	p - Prominent
Entisol	TEXTURE		cpr - columnar	
	cos - coarse sand		gr - granular	BOUNDARY
	s - sand		abk - angular blocky	Distinctness
DRAINAGE CLASS	fs - fine sand		sbk - subangular blocky	Abrupt <1" (thick)
	vfs - very fine sand		m - massive	<i>Clear</i> 1-2.5"
	lcos - loamy coarse sand		s - single grain	Gradual 2.5 -5"
	ls - loamy sand		Size	Diffuse >5
LANDFORM	lfs - loamy fine sand		vf - very fine	Topography
Upland	lvfs - loamy very fine sand		f - fine	Smooth - boundary is
	cosl - coarse sandy loam		m - medium	nearly level
DOGINION	sl - sandy loam		co - coarse	Wavy - pockets with
POSITION	fsl - fine sandy loam		vc - very coarse	width greater than depth
Summit	vfsl - very fine sandy loam		vt - very thin	Irregular - pockets with
	1 - Ioam		t - thin	depth greater than width
PARENT	sil - silt loam		th - thick	Broken discontinuous
PARENI MATERIAL	si - silt		vth - very thick	
Fill	scl - sandy clay loam			
Residuum	cl - clay loam			
Kesiduulli	sicl - silty clay loam			
BEDROCK LITHOLOGY	sc - sandy clay			
Quartzite	sic - silty clay			
Qualizite	c - clay			

Professional Soil Scientist

Date: 4/26/22 Pit # SW-3 Project: Poteryahin Location: 4304 Bristol Road Bensalem Township, Bucks Co., PA Soil Series Mapped: Urban-Chester Soil Series Classified: Urban Land

Limiting Zo	Zone 84+" noneSlope: 1-3%Conduct Double Ring Infiltrometer Test at 60"							
Horizon	Depth (In.)	Matrix Color	Texture	Structure	Consistence	Fe Redox Depletions	Fe Redox Concentrations	Boundary
^B	0-15	Multicolor	ch l	1 th pl 1 f sbk	friable	none	none	abrupt wavy
C1	15-34	10YR 5/6	cb l	0 m	very friable	none	none	clear wavy
C2	34-84+	2.5Y 7/4	sil 1	0 m	friable	none	none	

Township Representative: None Soil Scientist: Matthew C. Hostrander

Notes: Site evaluation for stormwater infiltration. No groundwater encountered. No bedrock encountered. Clean reworked site fill soils observed from 0 to 15 inches below grade.

Weather / Field Conditions: Overcast, 60s, soil moist.

EPIPEDON	COARSE FRAGMENTS (% of Vol	l.)	<u>STRUCTURE</u>	REDOX FEATURES
	15-35% 35-65%	>65%	Grade	Abundance
	(gr) gravelly (vgr) very gravelly	(egr)extr. gravelly	Structureless - 0	<i>f</i> - <i>Few</i> <2%
	(ch) channery (vch) very channery	(ech) extr.channery	Weak - 1	c - Common 2-20%
SUBSURFACE HORIZON(S)	(cb) cobbly (vcb) very cobbly	(ecb) extr. cobbly	Moderate - 2	<i>m - Many</i> >20%
	(fl) flaggy (vfl) very flaggy	(efl) extr. flaggy	Strong - 3	Contrast
	(st) stony (vst) very stony	(est) extr. stony	Туре	f - Faint
	(bd) bouldery (vbd) very bouldery	(ebd) extr. bouldery	pl - platy	d - Distinct
SOIL ORDER			pr - prismatic	p - Prominent
Entisol	TEXTURE		cpr - columnar	
	cos - coarse sand		gr - granular	BOUNDARY
	s - sand		abk - angular blocky	Distinctness
DRAINAGE CLASS	fs - fine sand		sbk - subangular blocky	Abrupt <1" (thick)
	vfs - very fine sand		m - massive	<i>Clear</i> 1-2.5"
	lcos - loamy coarse sand		s - single grain	Gradual 2.5 -5"
	ls - loamy sand		Size	Diffuse >5
LANDFORM	lfs - loamy fine sand		vf - very fine	Topography
Upland	lvfs - loamy very fine sand		f - fine	Smooth - boundary is
	cosl - coarse sandy loam		m - medium	nearly level
DOSTRIAN	sl - sandy loam		co - coarse	Wavy - pockets with
POSITION	fsl - fine sandy loam		vc - very coarse	width greater than depth
Summit	vfsl - very fine sandy loam		vt - very thin	Irregular - pockets with
	l - loam		t - thin	depth greater than width
PARENT	sil - silt loam		th - thick	Broken discontinuous
MATERIAL	si - silt		vth - very thick	
Fill	scl - sandy clay loam			
Residuum	cl - clay loam			
Residuum	sicl - silty clay loam			
BEDROCK LITHOLOGY	sc - sandy clay			
Schist	sic - silty clay			
Sellist	c - clay			

Matthew C. Hostrander, CPSS

Professional Soil Scientist

Date: 4/26/22 Pit # SW-4 Project: Poteryahin Location: 4304 Bristol Road Bensalem Township, Bucks Co., PA Soil Series Mapped: Urban-Chester Soil Series Classified: Urban Land

Limiting Zo	one 72"	Water		S	lope: 8-12%	Conduct Doubl	e Ring Infiltromet	er Test at N/A
Horizon	Depth (In.)	Matrix Color	Texture	Structure	Consistence	Fe Redox Depletions	Fe Redox Concentrations	Boundary
^B	0-24	10YR 4/4	ch l	1 f sbk	very friable	none	none	abrupt wavy
C	24-72	Variegated	sil	0 m	friable	none	none	
	72+	Water						

Township Representative: None Soil Scientist: Matthew C. Hostrander

Notes: Site evaluation for stormwater infiltration. Water from stormwater drainage observed at 72" bgs. No bedrock encountered. Clean reworked site fill soils observed from 0 to 24 inches below grade.

Weather / Field Conditions: Overcast, 60s, soil moist.

EPIPEDON	COARSE FRAGMENTS (% of Vol.)	STRUCTURE	REDOX FEATURES
	15-35% 35-65%	>65%	Grade	Abundance
	(gr) gravelly (vgr) very gravelly	(egr)extr. gravelly	Structureless - 0	<i>f</i> - <i>Few</i> <2%
	(ch) channery (vch) very channery	(ech) extr.channery	Weak - 1	<i>c</i> - <i>Common</i> 2-20%
SUBSURFACE HORIZON(S)	(cb) cobbly (vcb) very cobbly	(ecb) extr. cobbly	Moderate - 2	<i>m - Many</i> >20%
	(fl) flaggy (vfl) very flaggy	(efl) extr. flaggy	Strong - 3	Contrast
	(st) stony (vst) very stony	(est) extr. stony	Туре	f - Faint
	(bd) bouldery (vbd) very bouldery	(ebd) extr. bouldery	pl - platy	d - Distinct
SOIL ORDER			pr - prismatic	p - Prominent
Entisol	TEXTURE		cpr - columnar	
	cos - coarse sand		gr - granular	BOUNDARY
	s - sand		abk - angular blocky	Distinctness
DRAINAGE CLASS	fs - fine sand		sbk - subangular blocky	Abrupt <1" (thick)
	vfs - very fine sand		m - massive	<i>Clear</i> 1-2.5"
	lcos - loamy coarse sand		s - single grain	Gradual 2.5 -5"
LANDEODM	ls - loamy sand		Size	Diffuse >5
LANDFORM	lfs - loamy fine sand		vf - very fine	Topography
Upland	lvfs - loamy very fine sand		f - fine	Smooth - boundary is
	cosl - coarse sandy loam		m - medium	nearly level
POSITION	sl - sandy loam		co - coarse	Wavy - pockets with
Backslope	fsl - fine sandy loam		vc - very coarse	width greater than depth
Backstope	vfsl - very fine sandy loam		vt - very thin	Irregular - pockets with
	l - loam		t - thin	depth greater than width
PARENT	sil - silt loam		th - thick	Broken discontinuous
MATERIAL	si - silt		vth - very thick	
Fill	scl - sandy clay loam			
Residuum	cl - clay loam			
Residuum	sicl - silty clay loam			
BEDROCK LITHOLOGY	sc - sandy clay			
Schist	sic - silty clay c – clay			
Semist	c – ciay			

Professional Soil Scientist

Date: 4/26/22 Pit # SW-5 Project: Poteryahin Location: 4304 Bristol Road Bensalem Township, Bucks Co., PA Soil Series Mapped: Urban-Chester Soil Series Classified: Urban Land

Limiting Zo	one 84+"	none		S	lope: 1-3%	Conduct Double	Ring Infiltrometer	r Test at 54"
Horizon	Depth (In.)	Matrix Color	Texture	Structure	Consistence	Fe Redox Depletions	Fe Redox Concentrations	Boundary
^B1	0-24	Multicolor	ch l	1 f sbk	very friable	none	none	abrupt smooth
^B2	24-44	10YR 7/4	vcb l	1 f sbk	very friable	none	none	abrupt smooth
C1	44-57	10YR 4/4	ch l	1 th pl 0 m	friable	none	none	abrupt wavy
C2	57-84+	Variegated	sil	0 m	friable	none	none	

Township Representative: None Soil Scientist: Matthew C. Hostrander

Notes: Site evaluation for stormwater infiltration. No groundwater encountered. No bedrock encountered. Clean reworked site fill soils observed from 0 to 44 inches below grade.

Weather / Field Conditions: Overcast, 60s, soil moist.

EPIPEDON	COARSE FRAGMENTS (% of Vol	.)	STRUCTURE	REDOX FEATURES
	15-35% 35-65%	>65%	Grade	Abundance
	(gr) gravelly (vgr) very gravelly	(egr)extr. gravelly	Structureless - 0	f - Few <2%
	(ch) channery (vch) very channery	(ech) extr.channery	Weak - 1	c - Common 2-20%
SUBSURFACE HORIZON(S)	(cb) cobbly (vcb) very cobbly	(ecb) extr. cobbly	Moderate - 2	<i>m - Many</i> >20%
	(fl) flaggy (vfl) very flaggy	(efl) extr. flaggy	Strong - 3	Contrast
	(st) stony (vst) very stony	(est) extr. stony	Туре	f - Faint
	(bd) bouldery (vbd) very bouldery	(ebd) extr. bouldery	pl - platy	d - Distinct
SOIL ORDER			pr - prismatic	p - Prominent
Entisol	TEXTURE		cpr - columnar	
	cos - coarse sand		gr - granular	BOUNDARY
	s - sand		abk - angular blocky	Distinctness
DRAINAGE CLASS	fs - fine sand		sbk - subangular blocky	Abrupt <1" (thick)
	vfs - very fine sand		m - massive	<i>Clear</i> 1-2.5"
	lcos - loamy coarse sand		s - single grain	Gradual 2.5 -5"
I ANDRODIA	ls - loamy sand		Size	Diffuse >5
LANDFORM	lfs - loamy fine sand		vf - very fine	Topography
Terrace	lvfs - loamy very fine sand		f - fine	Smooth - boundary is
	cosl - coarse sandy loam		m - medium	nearly level
DOCITION	sl - sandy loam		co - coarse	Wavy - pockets with
POSITION	fsl - fine sandy loam		vc - very coarse	width greater than depth
	vfsl - very fine sandy loam		vt - very thin	Irregular - pockets with
	l - loam		t - thin	depth greater than width
PARENT	sil - silt loam		th - thick	Broken discontinuous
PARENI MATERIAL	si - silt		vth - very thick	
Fill	scl - sandy clay loam			
Residuum	cl - clay loam			
Kesidudiii	sicl - silty clay loam			
BEDROCK LITHOLOGY	sc - sandy clay			
Schist	sic - silty clay			
Sellist	c - clay			

Professional Soil Scientist

Date: 9/15/23 Pit # SW-6 Project: Poteryahin Location: 4304 Bristol Road Bensalem Township, Bucks Co., PA Soil Series Mapped: Urban-Chester Soil Series Classified: Urban-Chester

Limiting Zo	one 96+"	none		S	lope: 3-5%	Conduct Single	Ring Infiltrometer	Test at 60"
Horizon	Depth (In.)	Matrix Color	Texture	Structure	Consistence	Fe Redox Depletions	Fe Redox Concentrations	Boundary
	0-8		Asphalt & Stone					
^B	8-22	10YR 3/6	ch l	1 f sbk	friable	none	none	clear wavy
Bt	22-33	10YR 4/4	sil	2 m sbk	friable	none	none	clear wavy
BC	33-60	10YR 5/4	sil	1 th pl 1 m sbk	friable	none	none	clear wavy
C1	60-80	10YR 5/4	cb l	0 m	friable	none	none	clear wavy
C2	80-96+	2.5Y 6/4	vcb fsl	0 m	very friable	none	none	

Township Representative: None Soil Scientist: Matthew C. Hostrander

Notes: Site evaluation for stormwater infiltration. No groundwater encountered. No bedrock encountered. Asphalt and stone observed from 0 to 8 inches below grade. Clean reworked site fill soils observed from 8 to 22 inches below grade. **Weather / Field Conditions:** Sunny, 70s, soil moist.

Others Present at Site: Geary Erney of Total Contracting, LLC - backhoe provider and operator.

EPIPEDON	COARSE FRAGMENTS (% of Vo	.)	STRUCTURE	REDOX FEATURES
	15-35% 35-65%	>65%	Grade	Abundance
	(gr) gravelly (vgr) very gravelly	(egr)extr. gravelly	Structureless - 0	<i>f</i> - <i>Few</i> <2%
	(ch) channery (vch) very channery		Weak - 1	c - Common 2-20%
SUBSURFACE HORIZON(S)	(cb) cobbly (vcb) very cobbly	(ecb) extr. cobbly	Moderate - 2	<i>m</i> - <i>Many</i> >20%
Argillic	(fl) flaggy (vfl) very flaggy	(efl) extr. flaggy	Strong - 3	Contrast
	(st) stony (vst) very stony	(est) extr. stony	Туре	f - Faint
	(bd) bouldery (vbd) very bouldery	(ebd) extr. bouldery	pl - platy	d - Distinct
SOIL ORDER		· · ·	pr - prismatic	p - Prominent
Ultisol	TEXTURE		cpr - columnar	*
	cos - coarse sand		gr - granular	BOUNDARY
	s - sand		abk - angular blocky	Distinctness
DRAINAGE CLASS	fs - fine sand		sbk - subangular blocky	Abrupt <1" (thick)
Well Drained	vfs - very fine sand		m - massive	<i>Clear</i> 1-2.5"
	lcos - loamy coarse sand		s - single grain	Gradual 2.5 -5"
	ls - loamy sand		Size	Diffuse >5
LANDFORM	lfs - loamy fine sand		vf - very fine	Topography
Upland	lvfs - loamy very fine sand		f - fine	Smooth - boundary is
	cosl - coarse sandy loam		m - medium	nearly level
DOGUTION	sl - sandy loam		co - coarse	Wavy - pockets with
POSITION	fsl - fine sandy loam		vc - very coarse	width greater than depth
Summit	vfsl - very fine sandy loam		vt - very thin	Irregular - pockets with
	l - loam		t - thin	depth greater than width
PARENT	sil - silt loam		th - thick	Broken discontinuous
MATERIAL	si - silt		vth - very thick	
Fill	scl - sandy clay loam			
Residuum	cl - clay loam			
Kesiduulli	sicl - silty clay loam			
BEDROCK LITHOLOGY	sc - sandy clay			
	sic - silty clay			
Quartzite	c – clay			

1590 Canary Road, Quakertown, PA 18951 | 215-536-7006 | 215-538-6136

Single Ring Infiltrometer Test Report

4304 Bristol Road - SW-1	
Bensalem Township	
Bucks	
4/26/2022	

Testing Depth: 60"

(Below Ground Surface)

	Test #1	Test #2
	Drop (in)	Drop (in)
Presoak 1 (30 min)	Dry	Dry
Presoak 2 (30 min)	Dry	Dry

		Test #1	Test #2
Interval 1	(min)	5	5
Drop	(in)	1.25	1.5
Interval 2	(min)	5	5
Drop	(in)	1.25	1.5
-			
Interval 3	(min)	5	5
Drop	(in)	1.25	1.25
Interval 4	(min)	5	5
Drop	(in)	1.0	1.25
Interval 5	(min)	5	5
Drop	(in)	1.0	1.25
		-	
Interval 6	(min)	5	5
Drop	(in)	1.0	1.25
		T	
Interval 7	(min)	5	5
Drop	(in)	1.0	1.25
·			
Interval 8	(min)	5	5
Drop	(in)	1.0	1.25
Final Drop	in/hr	12.0	15.0

6 Consultants LLC

1590 Canary Road, Quakertown, PA 18951 | 215-536-7006 | 215-538-6136

Double Ring Infiltrometer Test Report

Site:

County:

Date:

Municipality:

4304 Bristol Road - SW-3 Bensalem Township Bucks 4/26/2022

Testing Depth: 60"

(Below Ground Surface)

Test #1

	Drop (in)
Presoak 1 (30 min)	0.25
Presoak 2 (30 min)	0.25

		Test #1
Interval 1	(min)	30
Drop	(in)	0.25
Interval 2	(min)	30
Drop	(in)	0.25
Interval 3	(min)	30
Drop	(in)	0.25
Interval 4	(min)	30
Drop	(in)	0.25
		· · · ·
Final Drop	in/hr	0.50

Infiltration Rate= 0.50 in/hr

Consultants LLC

1590 Canary Road, Quakertown, PA 18951 | 215-536-7006 | 215-538-6136

Double Ring Infiltrometer Test Report

Site:

County:

4304 Bristol Road - SW-5 Bensalem Township Bucks 4/26/2022

Date:

Municipality:

Testing Depth: 54"

(Below Ground Surface)

Test #1

	Drop (in)	
Presoak 1 (30 min) 0.25		
Presoak 2 (30 min)	0.25	

		Test #1
Interval 1	(min)	30
Drop	(in)	0.25
Interval 2	(min)	30
Drop	(in)	0.25
-		
Interval 3	(min)	30
Drop	(in)	0.25
Interval 4	(min)	30
Drop	(in)	0.25
Final Drop	in/hr	0.50

Infiltration Rate=

0.50 in/hr

B-6136 Consultants LLC

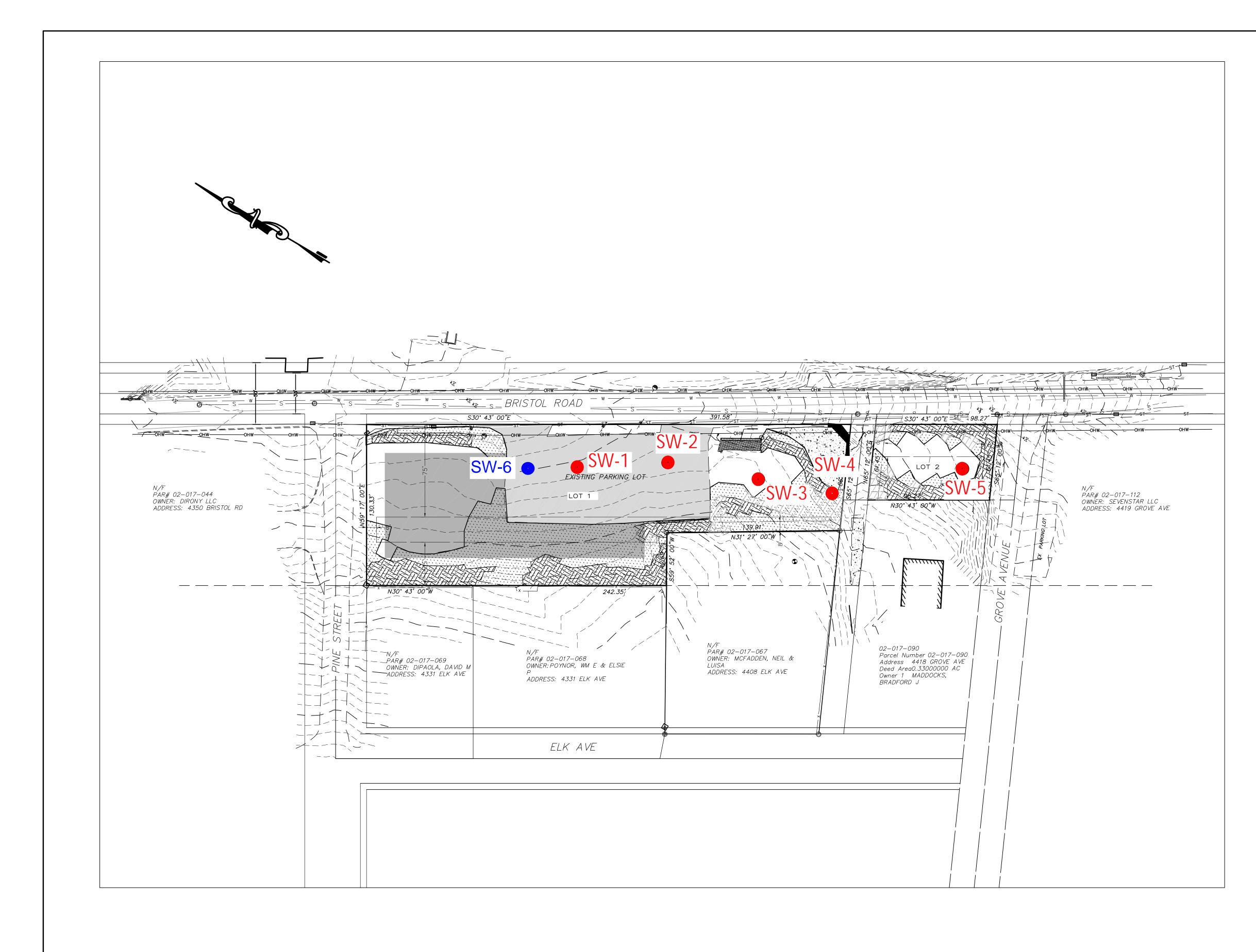
1590 Canary Road, Quakertown, PA 18951 | 215-536-7006 | 215-538-6136

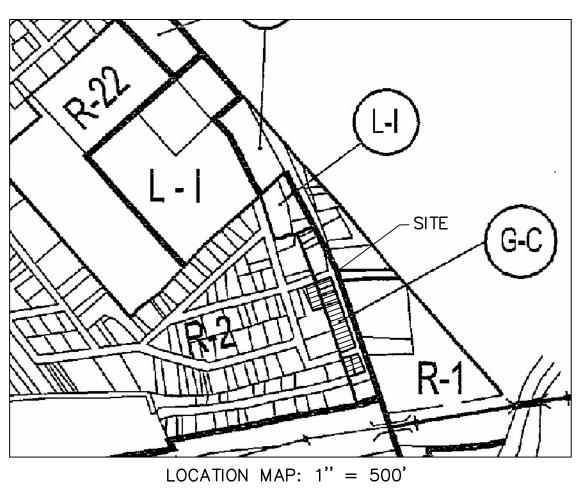
Single Ring Infiltrometer Test Report

4304 Bristol Road - SW-6	
Bensalem Township	
Bucks	
9/15/2023	
-	

Testing Depth: 60"

(Below Ground Surface)


	Test #1	Test #2
	Drop (in)	Drop (in)
Presoak 1 (30 min)	1.75	1.75
Presoak 2 (30 min)	1.5	1.75


		Test #1	Test #2
Interval 1	(min)	30	30
Drop	(in)	1.5	1.75
Interval 2	(min)	30	30
Drop	(in)	1.5	1.75
Interval 3	(min)	30	30
Drop	(in)	1.5	1.75
Interval 4	(min)	30	30
Drop	(in)	1.5	1.75
Final Drop	in/hr	3.0	3.5

Infiltration Rate=

in/hr

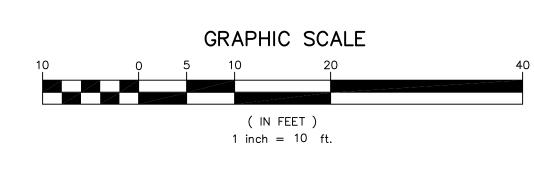
3.25

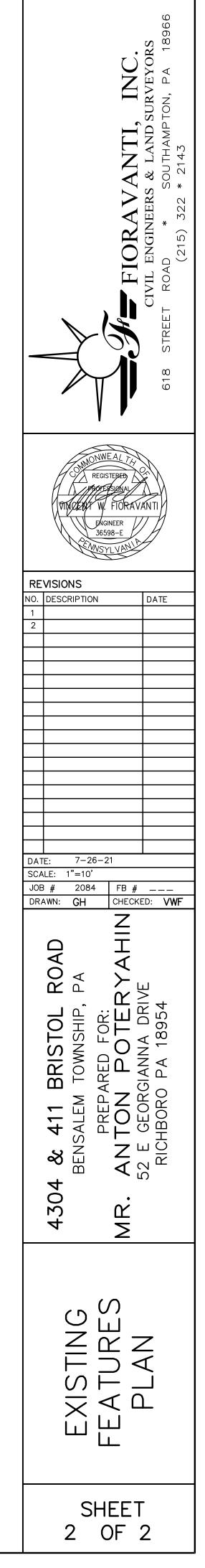
GENERAL NOTES

1. THIS PLAN DEPICTS THE PROPOSED DEVELOPMENT OF 4304 AND 411 BRISTOL ROAD EACH WITH A TWO STORY COMMERCIAL BUILDING CONTAINING WAREHOUSE SPACE ON THE FIRST FLOOR AND OFFICE SPACE ON THE SECOND FLOOR. PROPOSED BUILDINGS WILL BE SERVICED WITH PUBLIC WATER AND SEWER AS WELL AS RELATED INFRASTRUCTURE.

2. OWNER/APPLICANT: ANTON POTERYAHIN BRILLA LLC

52 E GEORGIANNA DRIVE RICHBORO PA 18954


- 3. PARID: 02-017-068-001 (LOT 1 4304 BRISTOL RD) & 02-017-090-001 (LOT 2- 411 BRISTOL RD)
- 4. ZONING DISTRICT GC: GENERAL COMMERCIAL


PROPOSED USE – AUTO REPAIR ITEM	REQUIRED	EXISTING LOT 1
MIN LOT AREA LOT WIDTH FRONT YARD	7200 SF 60 FT 75 FT	
SIDE YARD MIN REAR YARD BUILDING HEIGHT MAX BLDG COV MAX IMP SITE	8 FT 35 FT 45 FT 35 % 60 %	8 FT NA* NA 0 % 32.6 %
* EXISTING NON CONFORMITY ** VARIANCE REQUIRED		
ITEM	REQUIRED	EXISTING LOT 2
MIN LOT AREA LOT WIDTH FRONT YARD SIDE YARD MIN REAR YARD BUILDING HEIGHT MAX BLDG COV MAX IMP SITE	7200 SF 60 FT 75 FT 8 FT 35 FT 45 FT 35 % 60 %	6007 SF * 98.27 FT OVERLAP FT* 8 FT OVERLAP FT* <45 FT 0 % 0 %

* EXISTING NON CONFORMITY ** VARIANCE REQUIRED

LEGEND

100 YR	FEMA FLOODPLAIN
SOILS	SOILS
	STREAM
WL	EXISTING WETLANDS
	EXISTING BUILDINGS
	EXISTING PROPERTY LINE
	EXISTING 2 FOOT CONTOUR
	EXISTING 10 FOOT CONTOUR
=============	EXISTING CURB
	EXISTING PAVED DRIVEWAY
X	EXISTING FENCE
	EXISTING TREE MASS
	EXISTING TREES AND BUSHES TO REMAIN
	EXISTING EASEMENT
	EDGE OF EXISTING PAVED ROAD
онwдонw	EXISTING POLES
STST	EXISTING STORM SEWER
S S	EXISTING SANITARY SEWER
₩	EXISTING WATER MAIN
G G	EXISTING GAS MAIN

